Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
J Colloid Interface Sci. 2021 Oct 15;600:620-628. doi: 10.1016/j.jcis.2021.05.061. Epub 2021 May 14.
Electrochemical nitrate reduction reaction (NORR) is considered an appealing way for producing ammonia (NH) under ambient conditions and solving environmental problems caused by nitrate, whereas the lack of adequate catalysts hampers the development of NORR. Here, we firstly demonstrate that the Pd nanocrystalline with a well-desired facet can act as a highly efficient NORR electrocatalyst for ambient ammonia synthesis. Pd (1 1 1) exhibits excellent activity and selectivity in reducing NO to NH with a Faradaic efficiency of 79.91% and an NH production of 0.5485 mmol h cm (2.74 mmol h mg) in 0.1 M NaSO (containing 0.1 M NO), which is 1.4 times higher than Pd (1 0 0) and 1.9 times higher than Pd (1 1 0), respectively. Density functional theory (DFT) calculation reveals that the superior NORR activity of Pd (1 1 1) originates from its optimized activity of NO adsorption, smaller free energy change of the rate-limiting step (*NH to NH), and poorer hydrogen evolution reaction activity (HER, competitive reaction). This work not only highlights the potentials of Pd-based nanocatalysts for NORR but also provides new insight for the applications in NORR of other facet-orientation nanomaterials.
电化学硝酸盐还原反应 (NORR) 被认为是一种在环境条件下生产氨 (NH) 的有吸引力的方法,同时可以解决硝酸盐引起的环境问题,然而缺乏合适的催化剂阻碍了 NORR 的发展。在这里,我们首次证明了具有理想晶面的 Pd 纳米晶体可以作为一种高效的环境氨合成的 NORR 电催化剂。在 0.1 M NaSO (含 0.1 M NO) 中,Pd (111) 表现出优异的活性和选择性,将 NO 还原为 NH 的法拉第效率为 79.91%,NH 的生成量为 0.5485 mmol h cm (2.74 mmol h mg),分别比 Pd (100) 和 Pd (110) 高 1.4 倍和 1.9 倍。密度泛函理论 (DFT) 计算表明,Pd (111) 具有优异的 NORR 活性,源于其对 NO 吸附的优化活性、限速步骤 (*NH 到 NH) 的自由能变化较小,以及析氢反应 (HER,竞争反应) 活性较差。这项工作不仅突出了基于 Pd 的纳米催化剂在 NORR 中的潜力,而且为其他晶面取向纳米材料在 NORR 中的应用提供了新的见解。