Suppr超能文献

The MgADP-induced decrease of the SH1-SH2 fluorescence resonance energy transfer distance of myosin subfragment 1 occurs in two kinetic steps.

作者信息

Garland F, Gonsoulin F, Cheung H C

机构信息

Department of Natural Sciences, University of Michigan-Dearborn 48128.

出版信息

J Biol Chem. 1988 Aug 25;263(24):11621-3.

PMID:3403549
Abstract

The fluorescence resonance energy transfer distance between 5-[2-[iodoacetyl)amino)ethyl]aminoaphthalene-1-sulfonic acid covalently attached to the SH1 thiol of myosin subfragment 1 as the energy donor and N-(4-dimethylamino-3,5-dinitrophenyl)maleimide attached to SH2 as the energy acceptor has been found to decrease by about 7 A in the presence of MgADP (Dalby, R. E., Weiel, J., and Yount, R. G. (1983) Biochemistry 22, 4696-4706; Cheung, H. C., Gonsoulin, F., and Garland, F. (1985) Biochim. Biophys. Acta 832, 52-62). Fluorescence stopped-flow experiments on the same system have yielded biphasic traces which are resolvable into a fast and slow component, k1 and k2, respectively. Results of experiments in which k1 and k2 were measured as a function of excess ADP concentration showed: 1) a nonlinear dependence of the apparent rate constants on [ADP]; 2) k1 is a factor of 10 faster than k2. These results are consistent with the 3-step mechanism previously proposed for nucleotide binding to myosin S1 (Garland, F., and Cheung, H. C. (1979) Biochemistry 18, 5281-5289). Kinetic experiments in which the anisotropy of the donor was monitored show this quantity to be unchanged over the course of the reaction. The biphasic decrease of donor intensity is assigned to an increase in energy transfer efficiency which, from the above results, is due to a decrease in donor-acceptor distance, occurring in two steps. The fast step is associated with a 4-5-A decrease of the donor-acceptor separation, while the slow step is associated with a further decrease of approximately 2 A.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验