Zhu Yinian, Nong Peijie, Mo Nan, Zhu Zongqiang, Deng Huan, Tang Shen, Yang Hongqu, Zhang Lihao, Wang Xingxing
College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
Geochem Trans. 2021 May 26;22(1):1. doi: 10.1186/s12932-021-00075-1.
A complete series of calcite-rhodochrosite solid solutions [(CaMn)CO] are prepared, and their dissolution processes in various water samples are experimentally investigated. The crystal morphologies of the solid solutions vary from blocky spherical crystal aggregates to smaller spheres with an increasing incorporation of Mn in the solids. Regarding dissolution in N-degassed water, air-saturated water and CO-saturated water at 25 °C, the aqueous Ca and Mn concentrations reach their highest values after 1240-2400 h, 6-12 h and < 1 h, respectively, and then decrease gradually to a steady state; additionally, the ion activity products (log_IAP) at the final steady state (≈ solubility products in log_K) are estimated to be - 8.46 ± 0.06, - 8.44 ± 0.10 and - 8.59 ± 0.10 for calcite [CaCO], respectively, and - 10.25 ± 0.08, - 10.26 ± 0.10 and - 10.28 ± 0.03, for rhodochrosite [MnCO], respectively. As X increases, the log_IAP values decrease from - 8.44 ~ - 8.59 for calcite to - 10.25 ~ - 10.28 for rhodochrosite. The aqueous Mn concentrations increase with an increasing Mn/(Ca + Mn) molar ratio (X) of the (CaMn)CO solid solutions, while the aqueous Ca concentrations show the highest values at X = 0.53-0.63. In the constructed Lippmann diagram of subregular (CaMn)CO solid solutions, the solids dissolve incongruently, and the data points of the aqueous solutions move progressively up to the Lippmann solutus curve and then along the solutus curve or saturation curve of pure MnCO to the Mn-poor side. The microcrystalline cores of the spherical crystal aggregates are preferentially dissolved to form core hollows while simultaneously precipitating Mn-rich hexagonal prisms.
制备了完整系列的方解石-菱锰矿固溶体[(CaMn)CO₃],并通过实验研究了它们在各种水样中的溶解过程。随着固溶体中锰含量的增加,固溶体的晶体形态从块状球形晶体聚集体变为较小的球体。关于在25℃的氮气脱气水、空气饱和水和二氧化碳饱和水中的溶解情况,Ca和Mn的水溶液浓度分别在1240 - 2400小时、6 - 12小时和<1小时后达到最高值,然后逐渐降低至稳定状态;此外,方解石[CaCO₃]在最终稳定状态下的离子活度积(log_IAP,≈log_K中的溶度积)估计分别为-8.46±0.06、-8.44±0.10和-8.59±0.10,菱锰矿[MnCO₃]的分别为-10.25±0.08、-10.26±0.10和-10.28±0.03。随着X增加,log_IAP值从方解石的-8.44-8.59降低至菱锰矿的-10.25-10.28。(CaMn)CO₃固溶体的水溶液中Mn浓度随着Mn/(Ca + Mn)摩尔比(X)的增加而增加,而Ca的水溶液浓度在X = 0.53 - 0.63时显示出最高值。在构建的亚规则(CaMn)CO₃固溶体的李普曼图中,固溶体发生不一致溶解,水溶液的数据点逐渐向上移动至李普曼溶体曲线,然后沿着纯MnCO₃的溶体曲线或饱和曲线向贫锰侧移动。球形晶体聚集体的微晶核心优先溶解形成核心空洞,同时沉淀出富含锰的六方棱柱体。