Suppr超能文献

Signal transmission in noisy environments: auditory masking in the tympanic nerve of the bushcricket Metaballus litus (Orthoptera: Tettigoniinae).

作者信息

Bailey W J, Stephen R O, Yeoh P

机构信息

University of Western Australia, Nedlands.

出版信息

J Acoust Soc Am. 1988 May;83(5):1828-32. doi: 10.1121/1.396517.

Abstract

Physiological responses of the auditory leg nerve were recorded in the tettigoniid Metaballus litus to suprathreshold tone pulses of 12.45 kHz, which is close to the carrier frequency of the male's call. This stimulus tone frequency was determined by characterizing the polar response of the foreleg. Physiological threshold of the receptors was calculated from intensity input/output curves, and the experimental stimulus was set at 40 dB above this threshold value. There was low variance in threshold values between preparations. Continuous octave filtered white noise centered on the stimulus frequency was presented at the same time as the tone pulse at increasing intensities. The summed action potentials (SAPs) of the whole leg nerve were averaged over 256 stimulus presentations and the magnitude of the response was calibrated to dB values. The range of noise levels was set between that inducing no decrease in the SAP response to the tone pulse stimulus, up to a masking intensity where the response to the tone pulse was only just observable. Decrement in SAP magnitude was linear, and complete masking occurred when the noise level was 20-25 dB above the initial level of zero masking. This final level was comparable in magnitude to the sound-pressure level of the tone pulse and within the natural range of the insect's auditory behavior. Following the cessation of the noise signal, the SAPs were monitored over intervals of 2 min until the SAP asymptoted to the preexperimental condition. The reduction in SAP magnitude during noise presentation was attributed to a loss in synchrony from the individual tympanic receptors.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验