East William, Turcotte Jérôme, Plante Jean-Sébastien, Julio Guifré
Créatek, Université de Sherbrooke, Sherbrooke, QC, Canada.
J Intell Mater Syst Struct. 2021 May;32(9):955-970. doi: 10.1177/1045389X21991237. Epub 2021 Feb 11.
The main functions of automotive suspensions are to improve passenger comfort as well as vehicle dynamic performance. Simultaneously satisfying these functions is not possible because they require opposing suspension adjustments. This fundamental design trade-off can be solved with an active suspension system providing real-time modifications of the suspension behavior and vehicle attitude corrections. However, current active suspension actuator technologies have yet to reach a wide-spread commercial adoption due to excessive costs and performance limitations. This paper presents a design study assessing the potential of magnetorheological clutch actuators for automotive active suspension applications. An experimentally validated dynamic model is used to derive meaningful design requirements. An actuator design is proposed and built using a motor to feed counter-rotating MR clutches to provide upward and downward forces. Experimental characterization shows that all intended design requirements are met, and that the actuator can output a peak force of ±5300 N, a peak linear speed of ±1.9 m/s and a blocked-output force bandwidth of 92 Hz. When compared to other relevant technologies, the MR approach simultaneously shows both better force density and speeds (bandwidth) while adding minimal costs and weight. Results from this experimental assessment suggest that MR slippage actuation is promising for automotive active suspensions.
汽车悬架的主要功能是提高乘客舒适性以及车辆的动态性能。由于这两项功能需要对悬架进行相反的调整,所以无法同时满足。这种基本的设计权衡可以通过主动悬架系统来解决,该系统可对悬架行为进行实时修改并校正车辆姿态。然而,由于成本过高和性能限制,目前的主动悬架执行器技术尚未得到广泛的商业应用。本文提出了一项设计研究,评估磁流变离合器执行器在汽车主动悬架应用中的潜力。使用经过实验验证的动态模型来得出有意义的设计要求。提出并构建了一种执行器设计,该设计使用电机驱动反向旋转的磁流变离合器以提供向上和向下的力。实验表征表明,所有预期的设计要求均得到满足,该执行器可输出±5300 N的峰值力、±1.9 m/s的峰值线速度以及92 Hz的堵转输出力带宽。与其他相关技术相比,磁流变方法在增加最少成本和重量的同时,兼具更好的力密度和速度(带宽)。该实验评估结果表明,磁流变滑动驱动在汽车主动悬架方面具有广阔前景。