Suppr超能文献

Regular systems of inbreeding.

作者信息

Boucher W, Nagylaki T

机构信息

Enrico Fermi Institute, University of Chicago, IL 60637.

出版信息

J Math Biol. 1988;26(2):121-42. doi: 10.1007/BF00277729.

Abstract

Regular systems of inbreeding with discrete, nonoverlapping generations and the same number of individuals and mating pattern in every generation are studied. The matrix Q that specifies the recursion relations satisfied by the probabilities of identity is expressed in terms of the matrix M that describes the mating system. Necessary and sufficient conditions for convergence to genetic uniformity are given, and it is determined which probabilities of identity approach one. If the mating system has certain symmetries and these are imposed initially, then a matrix R, of lower dimension than Q, specifies the recursion relations. For such a mating system, for generic initial conditions, the condensed matrix R suffices for determining whether convergence to uniformity occurs and which probabilities of identity approach one. If Q is irreducible, the maximal eigenvalue of R is the same as that of Q. If Q is also aperiodic, this implies that the asymptotic rate of convergence to homogeneity of the condensed system is the same as that of the complete one. The above results apply to autosomal loci in monoecious (with or without selfing) and dioecious populations and to X-linked loci. As an example, all the eigenvalues and right and left eigenvectors of Q for circular mating are found.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验