Suppr超能文献

三叉神经痛放射外科治疗中的分次内运动管理:临床经验、成像频率和运动分析

Intra-Fraction Motion Management for Radiosurgical Treatments of Trigeminal Neuralgia: Clinical Experience, Imaging Frequency, and Motion Analysis.

作者信息

Agazaryan Nzhde, Tenn Stephen, Pouratian Nader, Kaprealian Tania

机构信息

Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, USA.

Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, USA.

出版信息

Cureus. 2021 Apr 21;13(4):e14616. doi: 10.7759/cureus.14616.

Abstract

Purpose The aim of this study is to evaluate the patient positioning and intra-fraction motion management performance of an image-guidance protocol established for radiosurgical treatments of trigeminal neuralgia patients. Specifically, it also aims to analyze patient motion data for the evaluation of current motion tolerance levels and imaging frequency utilized for repositioning patients. Methods A linear accelerator equipped with ExacTrac is used for patient positioning with stereoscopic imaging and treatments. Treatments are delivered with 4-mm conical collimators using seven equally spaced arcs. Arcs are 20 degrees apart and span 100 arc degrees each. Following initial ExacTrac positioning, cone beam computed tomography (CBCT) is obtained for independent confirmation of patient position. Patients are then stereoscopically imaged prior to the delivery of each arc and repositioned when 0.5-mm translational tolerance in any direction is exceeded. After the patient has been repositioned, verification stereoscopic images are obtained. Data from 48 patients with 607 image pairs were analyzed for this study. Results Over the course of 48 patient treatments, the mean magnitude of mean 3D deviations was 0.64 mm ± 0.12 mm (range: 0.07-2.74 mm). With the current 0.50-mm tolerance level for repositioning, patients exceeded the tolerance 51.4% of the time considering only images following an arc segment. For those instances, patients were repositioned with a mean magnitude of 0.85 mm ± 0.15 mm (1 SD). For a 0.25-mm tolerance level, 86.1% of arc segments would have required repositioning following the delivery of an arc segment, with a mean magnitude of 0.68 mm ± 0.12 mm. Conversely, for 0.75-mm and 1.00-mm tolerance levels, the tolerance would have been exceeded only 21.5% and 6.6% of instances following the delivery of an arc segment, with a mean magnitude of 1.08 mm ± 0.21 mm and 1.34 mm ± 0.24 mm, respectively. Each repositioning adds approximately 2 minutes to treatment time, which accounts for parts of the variability in patient treatment times. Following the initial ExacTrac and CBCT, the mean treatment time from first arc to treatment end was 57 minutes (range: 33-63 minutes). Discussions The current 0.50-mm tolerance level results in a clinically manageable but significant number of patient repositions during trigeminal neuralgia treatments. Frequent patient repositioning can result from actual patient motion convolved with the accuracy and precision limitations of the image analysis. Increasing the repositioning tolerance could more selectively correct for actual patient motion and shorten the treatment time at the expense of more variations in patient position. A more lenient tolerance level of 0.75 mm would decrease the repositioning rate by approximately a factor of 2; however, the permissible magnitude of motion will increase, leading to possible dosimetric consequences. Once treatment begins, there was no trend as to when patients exceeded the tolerance. Conclusions Current imaging protocol for patient positioning and intra-fraction motion management fits the clinical workflow with clinically acceptable residual patient motion. The next important step would be to assess how the number of repositions and magnitude of residual movements affect treatment outcomes.

摘要

目的 本研究旨在评估为三叉神经痛患者的放射外科治疗建立的图像引导方案的患者体位摆放及分次治疗期间运动管理的性能。具体而言,其还旨在分析患者运动数据,以评估当前的运动耐受水平及用于患者重新定位的成像频率。方法 使用配备ExacTrac的直线加速器通过立体成像进行患者体位摆放及治疗。使用4毫米锥形准直器以七个等间距弧进行治疗。弧间距为20度,每个弧跨度为100弧度。在初始ExacTrac定位后,获取锥形束计算机断层扫描(CBCT)以独立确认患者体位。然后在每个弧照射前对患者进行立体成像,当在任何方向上超过0.5毫米的平移容差时进行重新定位。患者重新定位后,获取验证立体图像。本研究分析了48例患者的607对图像数据。结果 在48例患者的治疗过程中,平均3D偏差的平均幅度为0.64毫米±0.12毫米(范围:0.07 - 2.74毫米)。对于当前0.50毫米的重新定位容差水平,仅考虑弧段后的图像时,患者有51.4%的时间超过容差。对于这些情况,患者重新定位的平均幅度为0.85毫米±0.15毫米(1个标准差)。对于0.25毫米的容差水平,86.1%的弧段在弧段照射后需要重新定位,平均幅度为0.68毫米±0.12毫米。相反,对于0.75毫米和1.00毫米的容差水平,在弧段照射后仅21.5%和6.6%的情况会超过容差,平均幅度分别为1.08毫米±0.21毫米和1.34毫米±0.24毫米。每次重新定位会使治疗时间增加约2分钟,这是患者治疗时间变异性的部分原因。在初始ExacTrac和CBCT之后,从第一个弧到治疗结束的平均治疗时间为57分钟(范围:33 - 63分钟)。讨论 当前0.50毫米的容差水平导致在三叉神经痛治疗期间患者重新定位的数量在临床上可管理但数量可观。频繁的患者重新定位可能是由于实际患者运动与图像分析的准确性和精确性限制相互交织。增加重新定位容差可以更有选择性地校正实际患者运动并缩短治疗时间,但代价是患者体位的变化更多。0.75毫米的更宽松容差水平将使重新定位率降低约一半;然而,允许的运动幅度将增加,可能导致剂量学后果。治疗开始后,患者何时超过容差没有趋势。结论 当前用于患者体位摆放及分次治疗期间运动管理的成像方案符合临床工作流程,患者的残余运动在临床上可接受。下一个重要步骤将是评估重新定位的次数和残余运动的幅度如何影响治疗结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c2/8139874/7fa5e578fab7/cureus-0013-00000014616-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验