Suppr超能文献

如何界定模糊,如何界定信息充分?贝叶斯荟萃分析的参考分析。

How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis.

机构信息

Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.

Department of Statistics, University of Warwick, Warwickshire, UK.

出版信息

Stat Med. 2021 Sep 10;40(20):4505-4521. doi: 10.1002/sim.9076. Epub 2021 May 26.

Abstract

Meta-analysis provides important insights for evidence-based medicine by synthesizing evidence from multiple studies which address the same research question. Within the Bayesian framework, meta-analysis is frequently expressed by a Bayesian normal-normal hierarchical model (NNHM). Recently, several publications have discussed the choice of the prior distribution for the between-study heterogeneity in the Bayesian NNHM and used several "vague" priors. However, no approach exists to quantify the informativeness of such priors, and thus, we develop a principled reference analysis framework for the Bayesian NNHM acting at the posterior level. The posterior reference analysis (post-RA) is based on two posterior benchmarks: one induced by the improper reference prior, which is minimally informative for the data, and the other induced by a highly anticonservative proper prior. This approach applies the Hellinger distance to quantify the informativeness of a heterogeneity prior of interest by comparing the corresponding marginal posteriors with both posterior benchmarks. The post-RA is implemented in the freely accessible R package ra4bayesmeta and is applied to two medical case studies. Our findings show that anticonservative heterogeneity priors produce platykurtic posteriors compared with the reference posterior, and they produce shorter 95% credible intervals (CrI) and optimistic inference compared with the reference prior. Conservative heterogeneity priors produce leptokurtic posteriors, longer 95% CrI and cautious inference. The novel post-RA framework could support numerous Bayesian meta-analyses in many research fields, as it determines how informative a heterogeneity prior is for the actual data as compared with the minimally informative reference prior.

摘要

元分析通过综合多个研究的证据来回答同一个研究问题,为循证医学提供了重要的见解。在贝叶斯框架内,元分析通常用贝叶斯正态-正态层次模型(NNHM)来表示。最近,有几篇文献讨论了在贝叶斯 NNHM 中选择组间异质性的先验分布,并使用了几种“模糊”先验。然而,目前还没有方法来量化这些先验的信息量,因此,我们在贝叶斯 NNHM 的后验水平上开发了一个有原则的参考分析框架。后验参考分析(post-RA)基于两个后验基准:一个由不适当的参考先验诱导,它对数据的信息量最小;另一个由高度保守的适当先验诱导。这种方法应用 Hellinger 距离通过比较相应的边缘后验与两个后验基准来量化感兴趣的异质性先验的信息量。post-RA 在免费使用的 R 包 ra4bayesmeta 中实现,并应用于两个医学案例研究。我们的研究结果表明,与参考后验相比,保守的异质性先验产生扁态后验,与参考先验相比,它们产生更短的 95%可信区间(CrI)和乐观的推断。保守的异质性先验产生尖态后验,更长的 95%CrI 和谨慎的推断。新的 post-RA 框架可以支持许多研究领域的众多贝叶斯元分析,因为它确定了一个异质性先验相对于最小信息量的参考先验对实际数据的信息量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验