Suppr超能文献

全球获得的信息先验对为澳大利亚碰撞数据开发的贝叶斯安全性能函数的影响。

Effects of globally obtained informative priors on bayesian safety performance functions developed for Australian crash data.

机构信息

School of Civil Engineering and Built Environment, Queensland University of Technology, 2 George Street, Brisbane City, QLD, 4001, Australia.

Civil Engineering, University of Queensland, Building 49 Advanced Engineering Building, Staff House Road, St Lucia, QLD, 4072, Australia.

出版信息

Accid Anal Prev. 2019 Aug;129:55-65. doi: 10.1016/j.aap.2019.04.023. Epub 2019 May 17.

Abstract

The precision and bias of Safety Performance Functions (SPFs) heavily rely on the data upon which they are estimated. When local (spatially and temporally representative) data are not sufficiently available, the estimated parameters in SPFs are likely to be biased and inefficient. Estimating SPFs using Bayesian inference may moderate the effects of local data insufficiency in that local data can be combined with prior information obtained from other parts of the world to incorporate additional evidence into the SPFs. In past applications of Bayesian models, non-informative priors have routinely been used because incorporating prior information in SPFs is not straightforward. The previous few attempts to employ informative priors in estimating SPFs are mostly based on local prior knowledge and assuming normally distributed priors. Moreover, the unobserved heterogeneity in local data has not been taken into account. As such, the effects of globally derived informative priors on the precision and bias of locally developed SPFs are essentially unknown. This study aims to examine the effects of globally informative priors and their distribution types on the precision and bias of SPFs developed for Australian crash data. To formulate and develop global informative priors, the means and variances of parameter estimates from previous research were critically reviewed. Informative priors were generated using three methods: 1) distribution fitting, 2) endogenous specification of dispersion parameters, and 3) hypothetically increasing the strength of priors obtained from distribution fitting. In so doing, the mean effects of crash contributing factors across the world are significantly different than those same effects in Australia. A total of 25 Bayesian Random Parameters Negative Binomial SPFs were estimated for different types of informative priors across five sample sizes. The means and standard deviations of posterior parameter estimates as well as SPFs goodness of fit were compared between the models across different sample sizes. Globally informative prior for the dispersion parameter substantially increases the precision of a local estimate, even when the variance of local data likelihood is small. In comparison with the conventional use of Normal distribution, Logistic, Weibull and Lognormal distributions yield more accurate parameter estimates for average annual daily traffic, segment length and number of lanes, particularly when sample size is relatively small.

摘要

安全性能函数(SPF)的精度和偏差在很大程度上依赖于对其进行估计的数据。当本地(空间和时间上具有代表性)数据不足时,SPF 中的估计参数很可能存在偏差和效率低下。使用贝叶斯推断估计 SPF 可以减轻本地数据不足的影响,因为可以将本地数据与从世界其他地方获得的先验信息相结合,将额外的证据纳入 SPF 中。在过去贝叶斯模型的应用中,由于将先验信息纳入 SPF 并不直接,因此通常使用非信息先验。之前有几次尝试在估计 SPF 时使用信息先验,主要是基于本地先验知识并假设先验分布为正态分布。此外,尚未考虑本地数据中的未观察到的异质性。因此,全球推导的信息先验对本地开发的 SPF 的精度和偏差的影响基本上是未知的。本研究旨在检验全球信息先验及其分布类型对澳大利亚碰撞数据开发的 SPF 的精度和偏差的影响。为了制定和开发全球信息先验,批判性地审查了先前研究中参数估计的均值和方差。使用三种方法生成信息先验:1)分布拟合,2)分散参数的内源性规范,以及 3)假设增加从分布拟合获得的先验的强度。这样,世界各地碰撞因素的平均影响与澳大利亚的相同影响有很大的不同。针对不同类型的信息先验,共为五个样本大小估算了 25 个贝叶斯随机参数负二项式 SPF。在不同样本大小下,比较了模型之间后验参数估计的均值和标准差以及 SPF 拟合优度。分散参数的全局信息先验大大提高了本地估计的精度,即使本地数据似然方差较小也是如此。与常规使用正态分布、对数、威布尔和对数正态分布相比,对于平均年日交通量、路段长度和车道数,尤其是在样本量相对较小时,这些分布可以产生更准确的参数估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验