Monks R, Boyd G S
Amersham International plc, Bucks, United Kingdom.
J Nucl Med. 1988 Aug;29(8):1411-8.
The stability of tauro-23-[75Se]selena-25-homocholic acid (SeHCAT) towards deconjugation by the enzyme cholylglycine hydrolase was compared with that of taurocholate: whereas taurocholate underwent 58% deconjugation within 2 hr, SeHCAT suffered only 8% deconjugation plus 5% conversion to an unknown product within 24 hr. Incubation of SeHCAT under anaerobic conditions for 48 hr at 37 degrees C with human fecal organisms resulted in considerable deconjugation, 7 alpha-dehydroxylation, and dehydrogenation. Twenty-four hours after the simultaneous administration of SeHCAT and tauro-[24-14C]cholate to a rabbit the recovery of 75Se in bile was 90% of that of 14C. Forty-eight hours following administration of SeHCAT to a second rabbit residual bile radioactivity revealed 80% deconjugation and dehydroxylation and 60% reconjugation with glycine. Although SeHCAT is more resistant than taurocholate towards modification by fecal bacterial enzymes, within the rabbit it follows the principal metabolic pathways of the natural bile acids.