Suppr超能文献

使用 LOINC 和 SNOMED CT 与 FHIR 进行微生物数据。

Use of LOINC and SNOMED CT with FHIR for Microbiology Data.

机构信息

Charité Universitätsmedizin.

Berlin Institute of Health.

出版信息

Stud Health Technol Inform. 2021 May 24;278:156-162. doi: 10.3233/SHTI210064.

Abstract

Infectious diseases due to microbial resistance pose a worldwide threat that calls for data sharing and the rapid reuse of medical data from health care to research. The integration of pathogen-related data from different hospitals can yield intelligent infection control systems that detect potentially dangerous germs as early as possible. Within the use case Infection Control of the German HiGHmed Project, eight university hospitals have agreed to share their data to enable analysis of various data sources. Data sharing among different hospitals requires interoperability standards that define the structure and the terminology of the information to be exchanged. This article presents the work performed at the University Hospital Charité and Berlin Institute of Health towards a standard model to exchange microbiology data. Fast Healthcare Interoperability Resources (FHIR) is a standard for fast information exchange that allows to model healthcare information, based on information packets called resources, which can be customized into so-called profiles to match use case- specific needs. We show how we created the specific profiles for microbiology data. The model was implemented using FHIR for the structure definition, and the international standards SNOMED CT and LOINC for the terminology services.

摘要

由于微生物耐药性导致的传染病构成了全球性威胁,这就需要数据共享,并能快速重复利用来自医疗保健到研究领域的医疗数据。整合来自不同医院的病原体相关数据,可以生成智能感染控制系统,尽早发现潜在危险的细菌。在德国 HiGHmed 项目的感染控制用例中,八所大学医院已同意共享他们的数据,以实现对各种数据源的分析。不同医院之间的数据共享需要互操作性标准,该标准定义了要交换的信息的结构和术语。本文介绍了 Charité 大学医院和柏林健康研究所为微生物数据交换制定标准模型所做的工作。Fast Healthcare Interoperability Resources (FHIR) 是一种快速信息交换标准,它允许基于称为资源的信息包来建模医疗保健信息,这些资源可以定制成所谓的配置文件,以满足特定用例的需求。我们展示了如何为微生物数据创建特定的配置文件。该模型使用 FHIR 进行结构定义,使用 SNOMED CT 和 LOINC 等国际标准进行术语服务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验