The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
Angew Chem Int Ed Engl. 2021 Aug 9;60(33):18111-18115. doi: 10.1002/anie.202103696. Epub 2021 Jul 9.
Exosomal glycoproteins play important roles in many physiological and pathological functions. Herein, we developed a dual labeling strategy based on a protein-specific aptamer tagging and metabolic glycan labeling for visualizing glycosylation of specific proteins on exosomes. The glycosylation of exosomal PD-L1 (exoPD-L1) was imaged in situ using intramolecular fluorescence resonance energy transfer (FRET) between fluorescent PD-L1 aptamers bound on exoPD-L1 and fluorescent tags on glycans introduced via metabolic glycan labeling. This method enables in situ visualization and biological function study of exosomal protein glycosylation. Exosomal PD-L1 glycosylation was confirmed to be required in interaction with PD-1 and participated in inhibiting of CD8 T cell proliferation. This is an efficient and non-destructive method to study the presence and function of exosomal protein-specific glycosylation in situ, which provides a powerful tool for exosomal glycoproteomics research.
外泌体糖蛋白在许多生理和病理功能中发挥着重要作用。在此,我们开发了一种基于蛋白质特异性适体标记和代谢糖基化标记的双重标记策略,用于可视化外泌体上特定蛋白质的糖基化。通过在结合于外泌体 PD-L1(exoPD-L1)上的荧光 PD-L1 适体和通过代谢糖基化标记引入的糖上的荧光标记之间的分子内荧光共振能量转移(FRET),可以原位成像 exoPD-L1 的糖基化。该方法能够实现外泌体蛋白糖基化的原位可视化和生物学功能研究。外泌体 PD-L1 的糖基化被证实与 PD-1 相互作用所必需,并参与抑制 CD8 T 细胞的增殖。这是一种原位研究外泌体蛋白特异性糖基化存在和功能的有效且非破坏性的方法,为外泌体糖蛋白质组学研究提供了有力工具。