Suppr超能文献

利用新型多亲小鼠模型揭示X连锁遗传性肾炎的修饰基因

Uncovering Modifier Genes of X-Linked Alport Syndrome Using a Novel Multiparent Mouse Model.

作者信息

Takemon Yuka, Wright Valerie, Davenport Bernard, Gatti Daniel M, Sheehan Susan M, Letson Kelsey, Savage Holly S, Lennon Rachel, Korstanje Ron

机构信息

The Jackson Laboratory, Bar Harbor, Maine.

Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.

出版信息

J Am Soc Nephrol. 2021 Aug;32(8):1961-1973. doi: 10.1681/ASN.2020060777. Epub 2021 May 27.

Abstract

BACKGROUND

Mutations in are responsible for 80% of cases of X-linked Alport Syndrome (XLAS). Although genes that cause AS are well characterized, people with AS who have similar genetic mutations present with a wide variation in the extent of kidney impairment and age of onset, suggesting the activities of modifier genes.

METHODS

We created a cohort of genetically diverse XLAS male and female mice using the Diversity Outbred mouse resource and measured albuminuria, GFR, and gene expression. Using a quantitative trait locus approach, we mapped modifier genes that can best explain the underlying phenotypic variation measured in our diverse population.

RESULTS

Genetic analysis identified several loci associated with the variation in albuminuria and GFR, including a locus on the X chromosome associated with X inactivation and a locus on chromosome 2 containing . Subsequent analysis of genetically reduced expression in knockout mice showed a decrease in albuminuria, podocyte effacement, and podocyte protrusions in the glomerular basement membrane, which support the candidacy of as a modifier gene for AS.

CONCLUSION

With this novel approach, we emulated the variability in the severity of kidney phenotypes found in human patients with Alport Syndrome through albuminuria and GFR measurements. This approach can identify modifier genes in kidney disease that can be used as novel therapeutic targets.

摘要

背景

[基因名称]突变导致80%的X连锁Alport综合征(XLAS)病例。尽管导致Alport综合征(AS)的基因已得到充分表征,但具有相似基因突变的AS患者在肾脏损害程度和发病年龄方面存在广泛差异,提示存在修饰基因的作用。

方法

我们利用多样性远交小鼠资源创建了一组具有遗传多样性的XLAS雄性和雌性小鼠,并测量了蛋白尿、肾小球滤过率(GFR)和基因表达。使用数量性状基因座方法,我们定位了能够最好地解释在我们的多样化群体中测量到的潜在表型变异的修饰基因。

结果

遗传分析确定了几个与蛋白尿和GFR变异相关的基因座,包括一个与X染色体失活相关的X染色体上的基因座和一个位于2号染色体上包含[基因名称]的基因座。随后对[基因名称]基因敲除小鼠中基因表达降低的分析显示蛋白尿减少、足细胞消失以及肾小球基底膜中足细胞突起减少,这支持了[基因名称]作为AS修饰基因的候选资格。

结论

通过这种新方法,我们通过测量蛋白尿和GFR模拟了Alport综合征人类患者中发现的肾脏表型严重程度的变异性。这种方法可以识别肾脏疾病中的修饰基因,这些基因可作为新的治疗靶点。

相似文献

1
Uncovering Modifier Genes of X-Linked Alport Syndrome Using a Novel Multiparent Mouse Model.
J Am Soc Nephrol. 2021 Aug;32(8):1961-1973. doi: 10.1681/ASN.2020060777. Epub 2021 May 27.
2
Quantitative trait loci influence renal disease progression in a mouse model of Alport syndrome.
Am J Pathol. 2002 Feb;160(2):721-30. doi: 10.1016/S0002-9440(10)64892-4.
3
A mouse Col4a4 mutation causing Alport glomerulosclerosis with abnormal collagen α3α4α5(IV) trimers.
Kidney Int. 2014 Jun;85(6):1461-8. doi: 10.1038/ki.2013.493. Epub 2014 Feb 12.
4
Alport syndrome. Molecular genetic aspects.
Dan Med Bull. 2009 Aug;56(3):105-52.
5
Female X-linked Alport syndrome with somatic mosaicism.
Clin Exp Nephrol. 2017 Oct;21(5):877-883. doi: 10.1007/s10157-016-1352-y. Epub 2016 Oct 31.
6
Synaptopodin deficiency exacerbates kidney disease in a mouse model of Alport syndrome.
Am J Physiol Renal Physiol. 2021 Jul 1;321(1):F12-F25. doi: 10.1152/ajprenal.00035.2021. Epub 2021 May 24.
9
X-linked Alport syndrome caused by splicing mutations in COL4A5.
Clin J Am Soc Nephrol. 2014 Nov 7;9(11):1958-64. doi: 10.2215/CJN.04140414. Epub 2014 Sep 2.
10
X-inactivation modifies disease severity in female carriers of murine X-linked Alport syndrome.
Nephrol Dial Transplant. 2010 Mar;25(3):764-9. doi: 10.1093/ndt/gfp551. Epub 2009 Oct 23.

引用本文的文献

1
NAD+ prevents chronic kidney disease by activating renal tubular metabolism.
JCI Insight. 2025 Mar 10;10(5):e181443. doi: 10.1172/jci.insight.181443.
2
Candidate Genetic Modifiers in Alport Syndrome: A Case Series.
Life (Basel). 2025 Feb 14;15(2):298. doi: 10.3390/life15020298.
3
Clinical profile and molecular genetic analysis of alport syndrome in children: a single center experience.
Front Pediatr. 2024 Dec 23;12:1487927. doi: 10.3389/fped.2024.1487927. eCollection 2024.
4
Genetic diagnosis of Alport syndrome in 16 Chinese families.
Mol Genet Genomic Med. 2024 Mar;12(3):e2406. doi: 10.1002/mgg3.2406.
5
Genetic Modifiers of Mendelian Monogenic Collagen IV Nephropathies in Humans and Mice.
Genes (Basel). 2023 Aug 25;14(9):1686. doi: 10.3390/genes14091686.
6
Case report: A case report of Alport syndrome caused by a novel mutation of .
Front Genet. 2023 Jul 17;14:1216809. doi: 10.3389/fgene.2023.1216809. eCollection 2023.
8
Variation in histone configurations correlates with gene expression across nine inbred strains of mice.
Genome Res. 2023 Jun;33(6):857-871. doi: 10.1101/gr.277467.122. Epub 2023 May 22.
9

本文引用的文献

1
Genome-wide association study identifies new loci for albuminuria in the Japanese population.
Clin Exp Nephrol. 2020 Aug;24(8):1-9. doi: 10.1007/s10157-020-01884-x. Epub 2020 Jul 20.
2
FAR2 is associated with kidney disease in mice and humans.
Physiol Genomics. 2018 Aug 1;50(8):543-552. doi: 10.1152/physiolgenomics.00118.2017. Epub 2018 Apr 13.
3
Hierarchical analysis of RNA-seq reads improves the accuracy of allele-specific expression.
Bioinformatics. 2018 Jul 1;34(13):2177-2184. doi: 10.1093/bioinformatics/bty078.
4
A mixed modality approach towards Xi reactivation for Rett syndrome and other X-linked disorders.
Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E668-E675. doi: 10.1073/pnas.1715124115. Epub 2017 Dec 27.
5
Outcomes of kidney transplantation in Alport syndrome compared with other forms of renal disease.
Ren Fail. 2017 Nov;39(1):290-293. doi: 10.1080/0886022X.2016.1262266. Epub 2016 Dec 5.
7
Collagen IV diseases: A focus on the glomerular basement membrane in Alport syndrome.
Matrix Biol. 2017 Jan;57-58:45-54. doi: 10.1016/j.matbio.2016.08.005. Epub 2016 Aug 27.
8
The Mouse Universal Genotyping Array: From Substrains to Subspecies.
G3 (Bethesda). 2015 Dec 18;6(2):263-79. doi: 10.1534/g3.115.022087.
9
Genetic Background is a Key Determinant of Glomerular Extracellular Matrix Composition and Organization.
J Am Soc Nephrol. 2015 Dec;26(12):3021-34. doi: 10.1681/ASN.2014040419. Epub 2015 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验