Madhusudhan Thati, Wang Hongjie, Dong Wei, Ghosh Sanchita, Bock Fabian, Thangapandi Veera Raghavan, Ranjan Satish, Wolter Juliane, Kohli Shrey, Shahzad Khurrum, Heidel Florian, Krueger Martin, Schwenger Vedat, Moeller Marcus J, Kalinski Thomas, Reiser Jochen, Chavakis Triantafyllos, Isermann Berend
Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany.
1] Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany [2] Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.
Nat Commun. 2015 Mar 10;6:6496. doi: 10.1038/ncomms7496.
Endoplasmic reticulum (ER) stress is associated with diabetic nephropathy (DN), but its pathophysiological relevance and the mechanisms that compromise adaptive ER signalling in podocytes remain unknown. Here we show that nuclear translocation of the transcription factor spliced X-box binding protein-1 (sXBP1) is selectively impaired in DN, inducing activating transcription factor-6 (ATF6) and C/EBP homology protein (CHOP). Podocyte-specific genetic ablation of XBP1 or inducible expression of ATF6 in mice aggravates DN. sXBP1 lies downstream of insulin signalling and attenuating podocyte insulin signalling by genetic ablation of the insulin receptor or the regulatory subunits phosphatidylinositol 3-kinase (PI3K) p85α or p85β impairs sXBP1 nuclear translocation and exacerbates DN. Corroborating our findings from murine DN, the interaction of sXBP1 with p85α and p85β is markedly impaired in the glomerular compartment of human DN. Thus, signalling via the insulin receptor, p85, and XBP1 maintains podocyte homeostasis, while disruption of this pathway impairs podocyte function in DN.
内质网(ER)应激与糖尿病肾病(DN)相关,但其病理生理相关性以及足细胞中适应性ER信号转导受损的机制仍不清楚。在此我们表明,转录因子剪接X盒结合蛋白1(sXBP1)的核转位在DN中选择性受损,从而诱导激活转录因子6(ATF6)和C/EBP同源蛋白(CHOP)。小鼠中XBP1的足细胞特异性基因敲除或ATF6的诱导性表达会加重DN。sXBP1位于胰岛素信号传导的下游,通过胰岛素受体或调节亚基磷脂酰肌醇3激酶(PI3K)p85α或p85β的基因敲除减弱足细胞胰岛素信号传导会损害sXBP1的核转位并加重DN。与我们在小鼠DN中的发现一致,在人类DN的肾小球部分,sXBP1与p85α和p85β的相互作用明显受损。因此,通过胰岛素受体、p85和XBP1的信号传导维持足细胞稳态,而该途径的破坏会损害DN中足细胞的功能。