Yasuda Kenji, Wang Xirui, Watanabe Kenji, Taniguchi Takashi, Jarillo-Herrero Pablo
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
Science. 2021 May 27. doi: 10.1126/science.abd3230.
2D ferroelectrics with robust polarization down to atomic thicknesses provide building blocks for functional heterostructures. Experimental realization remains challenging because of the requirement of a layered polar crystal. Here, we demonstrate a rational design approach to engineering 2D ferroelectrics from a non-ferroelectric parent compound via employing van der Waals assembly. Parallel-stacked bilayer boron nitride exhibits out-of-plane electric polarization that reverses depending on the stacking order. The polarization switching is probed via the resistance of an adjacently stacked graphene sheet. Twisting the boron nitride sheets by a small angle changes the dynamics of switching thanks to the formation of moiré ferroelectricity with staggered polarization. The ferroelectricity persists to room temperature while keeping the high mobility of graphene, paving the way for potential ultrathin nonvolatile memory applications.
具有强大极化特性且厚度可低至原子级的二维铁电体为功能性异质结构提供了构建模块。由于需要层状极性晶体,实验实现仍然具有挑战性。在此,我们展示了一种合理的设计方法,通过范德华组装从非铁电母体化合物工程化二维铁电体。平行堆叠的双层氮化硼表现出取决于堆叠顺序而反转的面外电极化。通过相邻堆叠的石墨烯片的电阻来探测极化切换。将氮化硼片以小角度扭转会改变切换动力学,这得益于具有交错极化的莫尔铁电性的形成。铁电性在室温下持续存在,同时保持石墨烯的高迁移率,为潜在的超薄非易失性存储器应用铺平了道路。