利用球面反射光学的光谱照明系统。
Spectral Illumination System Utilizing Spherical Reflection Optics.
作者信息
Mayes Samantha Gunn, Browning Craig, Mayes Samuel A, Parker Marina, Rich Thomas C, Leavesley Silas J
机构信息
Department of Chemical and Biomolecular Engineering.
Department of Systems Engineering.
出版信息
Proc SPIE Int Soc Opt Eng. 2020 Feb;11243. doi: 10.1117/12.2546395. Epub 2020 Feb 17.
Fluorescence imaging microscopy has traditionally been used because of the high specificity that is achievable through fluorescence labeling techniques and optical filtering. When combined with spectral imaging technologies, fluorescence microscopy can allow for quantitative identification of multiple fluorescent labels. We are working to develop a new approach for spectral imaging that samples the fluorescence excitation spectrum and may provide increased signal strength. The enhanced signal strength may be used to provide increased spectral sensitivity and spectral, spatial, and temporal sampling capabilities. A proof of concept excitation scanning system has shown over 10-fold increase in signal to noise ratio compared to emission scanning hyperspectral imaging. Traditional hyperspectral imaging fluorescence microscopy methods often require minutes of acquisition time. We are developing a new configuration that utilizes solid state LEDs to combine multiple illumination wavelengths in a 2-mirror assembly to overcome the temporal limitations of traditional hyperspectral imaging. We have previously reported on the theoretical performance of some of the aspects of this system by using optical ray trace modeling. Here, we present results from prototyping and benchtop testing of the system, including assembly, optical characterization, and data collection. This work required the assembly and characterization of a novel excitation scanning hyperspectral microscopy system, containing 12 LEDs ranging from 365-425 nm, 12 lenses, a spherical mirror, and a flat mirror. This unique approach may reduce the long image acquisition times seen in traditional hyperspectral imaging while maintaining high specificity and sensitivity for multilabel identification and autofluorescence imaging in real time.
传统上,荧光成像显微镜一直被使用,这是因为通过荧光标记技术和光学滤波能够实现高特异性。当与光谱成像技术相结合时,荧光显微镜可以对多种荧光标记进行定量识别。我们正在努力开发一种新的光谱成像方法,该方法对荧光激发光谱进行采样,并可能提高信号强度。增强后的信号强度可用于提高光谱灵敏度以及光谱、空间和时间采样能力。一个概念验证激发扫描系统显示,与发射扫描高光谱成像相比,信噪比提高了10倍以上。传统的高光谱成像荧光显微镜方法通常需要数分钟的采集时间。我们正在开发一种新的配置,利用固态发光二极管在一个双镜组件中组合多个照明波长,以克服传统高光谱成像的时间限制。我们之前通过光线追踪建模报告了该系统某些方面的理论性能。在此,我们展示了该系统的原型制作和台式测试结果,包括组装、光学特性表征和数据收集。这项工作需要组装和表征一个新型激发扫描高光谱显微镜系统,该系统包含12个波长范围在365 - 425纳米的发光二极管、12个透镜、一个球面镜和一个平面镜。这种独特的方法可能会减少传统高光谱成像中较长的图像采集时间,同时在实时多标记识别和自发荧光成像方面保持高特异性和高灵敏度。
相似文献
Proc SPIE Int Soc Opt Eng. 2020-2
Proc SPIE Int Soc Opt Eng. 2019-2
Rev Sci Instrum. 2008-2
Proc SPIE Int Soc Opt Eng. 2019-2
Proc SPIE Int Soc Opt Eng. 2016-2
Proc SPIE Int Soc Opt Eng. 2017
本文引用的文献
Proc SPIE Int Soc Opt Eng. 2019-2
Proc SPIE Int Soc Opt Eng. 2017
Proc SPIE Int Soc Opt Eng. 2018
J Biomed Opt. 2016-10-1
J Biomed Opt. 2014-4
J Biomed Opt. 2014-1
Sensors (Basel). 2013-7-19