Peratheepan P, Britz D, Strydom A M
Department of Physics, Eastern University, Vantharumoolai, Chenkalady 30350, Sri Lanka.
Highly Correlated Matter Research Group, Physics Department, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa.
J Phys Condens Matter. 2021 May 28;33(27). doi: 10.1088/1361-648X/abfee3.
The influence of Y- and La-substitution for Ce on the competing Kondo effect and magnetic ordering, as well as on spin dynamics in the Kondo semiconductor CeRuAlhave been investigated by means of thermal, electronic, and magnetic properties. The parent compound CeRuAlis known to be a controversial antiferromagnet with high magnetic ordering temperature= 27 K. A small negative chemical pressure caused by La-doping results rapid suppression ofand spin gap energy Δ, compared to a small positive pressure caused by Y-doping. Upon Y- and La-doping, the electrical resistivity() illustrates the evolution from dense Kondo semiconductor to incoherent single-ion Kondo behaviour, and hence weakens the-hybridization and thus lowers the Kondo temperature. The 5% Y- and La-doped compounds show enormous enhancement in the thermoelectric power and complex behaviour in the Hall resistivity belowdue to an abrupt change in charge carrier mobility with temperature. The magnetic contribution to electrical resistivity() (≳50% La) and specific heat()/(≳70% La) evidence non-Fermi-liquid behaviour at low temperature in the La-doped system, due to interplay of atomic disorder with spin-fluctuation. Application of magnetic field suppresses the spin-fluctuation in()/and eventually emerges to Fermi-liquid state in the 95% La-doped compound in 9 T. The magnetic phase diagram illustrates that the strength of the Kondo interaction in the doped systems are primarily controlled by the effect of volume change as described by the compressible Kondo lattice model. We ascribe the fascinating observation of≃ 4to anisotropy in the single-ion crystal electric field in the presence of strong anisotropic-hybridization.
通过热学、电学和磁学性质研究了用Y和La替代Ce对近藤半导体CeRuAl中竞争近藤效应和磁有序以及自旋动力学的影响。母体化合物CeRuAl是一种具有高磁有序温度((T_N = 27) K)的有争议的反铁磁体。与Y掺杂引起的小正压相比,La掺杂引起的小负化学压力导致(T_N)和自旋能隙(\Delta)迅速被抑制。Y和La掺杂后,电阻率(\rho)表明从致密近藤半导体向非相干单离子近藤行为的演变,从而削弱了(f - e)杂化,进而降低了近藤温度。5% Y和La掺杂的化合物在热电功率方面有巨大增强,并且由于载流子迁移率随温度的突然变化,在低于(T_N)时霍尔电阻率表现出复杂行为。在La掺杂系统中,磁对电阻率(\rho)((\gtrsim50%) La)和比热(C/T)((\gtrsim70%) La)的贡献证明了低温下的非费米液体行为,这是由于原子无序与自旋涨落的相互作用。施加磁场抑制了(C/T)中的自旋涨落,并最终在9 T磁场下95% La掺杂的化合物中出现费米液体状态。磁相图表明,掺杂系统中近藤相互作用的强度主要由可压缩近藤晶格模型描述的体积变化效应控制。我们将(\sim4)的迷人观测结果归因于在强各向异性(f - e)杂化存在下单离子晶体电场中的各向异性。