Wang Lili, Yoo Jason J, Lin Ting-An, Perkinson Collin F, Lu Yongli, Baldo Marc A, Bawendi Moungi G
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
Adv Mater. 2021 Jul;33(27):e2100854. doi: 10.1002/adma.202100854. Epub 2021 May 28.
Photon upconversion via triplet-triplet annihilation (TTA) has promise for overcoming the Shockley-Queisser limit for single-junction solar cells by allowing the utilization of sub-bandgap photons. Recently, bulk perovskites have been employed as sensitizers in solid-state upconversion devices to circumvent poor exciton diffusion in previous nanocrystal (NC)-sensitized devices. However, an in-depth understanding of the underlying photophysics of perovskite-sensitized triplet generation is still lacking due to the difficulty of precisely controlling interfacial properties of fully solution-processed devices. In this study, interfacial properties of upconversion devices are adjusted by a mild surface solvent treatment, specifically altering perovskite surface properties without perturbing the bulk perovskite. Thermal evaporation of the annihilator precludes further solvent contamination. Counterintuitively, devices with more interfacial traps show brighter upconversion. Approximately an order of magnitude difference in upconversion brightness is observed across different interfacial solvent treatments. Sequential charge transfer and interfacial trap-assisted triplet sensitization are demonstrated by comparing upconversion performance, transient photoluminescence dynamics, and magnetic field dependence of the devices. Incomplete triplet conversion from transferred charges and consequent triplet-charge annihilation (TCA) are also observed. The observations highlight the importance of interfacial control and provide guidance for further design and optimization of upconversion devices using perovskites or other semiconductors as sensitizers.
通过三重态-三重态湮灭(TTA)实现的光子上转换有望通过利用子带隙光子来克服单结太阳能电池的肖克利-奎塞尔极限。最近,体相钙钛矿已被用作固态上转换器件中的敏化剂,以规避先前纳米晶体(NC)敏化器件中激子扩散不良的问题。然而,由于难以精确控制全溶液处理器件的界面性质,对钙钛矿敏化三重态产生的潜在光物理过程仍缺乏深入了解。在本研究中,通过温和的表面溶剂处理来调节上转换器件的界面性质,具体而言是改变钙钛矿表面性质而不扰动体相钙钛矿。湮灭剂的热蒸发可防止进一步的溶剂污染。与直觉相反,具有更多界面陷阱的器件显示出更亮的上转换。在不同的界面溶剂处理中观察到上转换亮度大约有一个数量级的差异。通过比较器件的上转换性能、瞬态光致发光动力学和磁场依赖性,证明了顺序电荷转移和界面陷阱辅助的三重态敏化。还观察到转移电荷的不完全三重态转换以及随之而来的三重态-电荷湮灭(TCA)。这些观察结果突出了界面控制的重要性,并为进一步设计和优化使用钙钛矿或其他半导体作为敏化剂的上转换器件提供了指导。