Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science & Technology (IUST), Narmak, 16846-13114, Tehran, Iran.
Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science & Technology (IUST), Narmak, 16846-13114, Tehran, Iran.
Int J Psychophysiol. 2021 Aug;166:61-70. doi: 10.1016/j.ijpsycho.2021.05.008. Epub 2021 May 25.
Working memory (WM) can be considered as a limited-capacity system which is capable of saving information temporarily with the aim of processing. The aim of the present study was to establish whether eccentricity representation in WM could be decoded from eletroencephalography (EEG) alpha-band oscillation in parietal cortex during delay-period while performing memory-guided saccade (MGS) task. In this regard, we recorded EEG and Eye-tracking signals of 17 healthy volunteers in a variant version of MGS task. We designed the modified version of MGS task for the first time to investigate the effect of locating stimuli in two different positions, in a near (6°) eccentricity and far (12°) eccentricity on saccade error as a behavioral parameter. Another goal of study was to discern whether or not varying the stimuli loci can alter behavioral and eletroencephalographical data while performing the variant version of MGS task. Our findings demonstrate that saccade error for the near fixation condition is significantly smaller than the far from fixation condition. We observed an increase in alpha power in parietal lobe in near vs far conditions. In addition, the results indicate that the increase in alpha (8-12 Hz) power from fixation to memory was negatively correlated with saccade error. The novel approach of using simultaneous EEG/Eye-tracking recording in the modified MGS task provided both behavioral and electroencephalographic analyses for oscillatory activity during this new version of MGS task.
工作记忆(WM)可以被认为是一种有限容量的系统,能够临时保存信息,以便进行处理。本研究的目的是确定在执行记忆引导扫视(MGS)任务期间,顶叶皮层的 alpha 波段振荡是否可以从脑电(EEG)中解码出 WM 中的离轴表示。为此,我们在一个 MGS 任务的变体中记录了 17 名健康志愿者的 EEG 和眼动追踪信号。我们首次设计了修改后的 MGS 任务版本,以研究在两种不同位置(近(6°)和远(12°)离轴)定位刺激对扫视误差的影响,作为行为参数。研究的另一个目标是辨别在执行变体 MGS 任务时,改变刺激位置是否会改变行为和脑电图数据。我们的研究结果表明,近注视条件下的扫视误差明显小于远注视条件下的扫视误差。我们观察到在近距与远距条件下,顶叶区域的 alpha 功率增加。此外,结果表明,从注视到记忆的 alpha(8-12 Hz)功率增加与扫视误差呈负相关。在修改后的 MGS 任务中同时使用 EEG/眼动追踪记录的新方法为这个新版本的 MGS 任务中的振荡活动提供了行为和脑电图分析。