Suppr超能文献

视觉引导与记忆引导眼跳的适应特征比较。

Comparison of adaptation characteristics between visually and memory-guided saccades.

机构信息

Department of Otolaryngology-HNS, University of Washington, Seattle, Washington, United States.

Washington National Primate Research Center, University of Washington, Seattle, Washington, United States.

出版信息

J Neurophysiol. 2024 Aug 1;132(2):335-346. doi: 10.1152/jn.00050.2024. Epub 2024 Jun 12.

Abstract

Saccade adaptation plays a crucial role in maintaining saccade accuracy. The behavioral characteristics and neural mechanisms of saccade adaptation for an externally cued movement, such as visually guided saccades (VGS), are well studied in nonhuman primates. In contrast, little is known about the saccade adaptation of an internally driven movement, such as memory-guided saccades (MGS), which are guided by visuospatial working memory. As the oculomotor plant changes because of growth, aging, or skeletomuscular problems, both types of saccades need to be adapted. Do both saccade types engage a common adaptation mechanism? In this study, we compared the characteristics of amplitude decrease adaptation in MGS with VGS in nonhuman primates. We found that the adaptation speed was faster for MGS than for VGS. Saccade duration changed during MGS adaptation, whereas saccade peak velocity changed during VGS adaptation. We also compared the adaptation field, that is, the gain change for saccade amplitudes other than the adapted. The gain change for MGS declines on both smaller and larger sides of adapted amplitude, more rapidly for larger than smaller amplitudes, whereas the decline in VGS was reversed. Thus, the differences between VGS and MGS adaptation characteristics support the previously suggested hypothesis that the adaptation mechanisms of VGS and MGS are distinct. Furthermore, the result suggests that the MGS adaptation site is a brain structure that influences saccade duration, whereas the VGS adaptation site influences saccade peak velocity. These results should be beneficial for future neurophysiological experiments. Plasticity helps to overcome persistent motor errors. Such motor plasticity or adaptation can be investigated with saccades. Thus far our knowledge is primarily about visually guided saccades, an externally cued movement, which we can make only when the object is visible at the time of saccade. However, as the world is complex, we can make saccades even when the object is not visible. Here, we investigate the adaptation of an internally driven movement: the memory-guided saccade.

摘要

扫视适应在保持扫视准确性方面起着至关重要的作用。在非灵长类动物中,对外界提示运动(如视觉引导扫视 VGS)的扫视适应的行为特征和神经机制已经得到了很好的研究。相比之下,对于由视空间工作记忆引导的内部驱动运动(如记忆引导扫视 MGS)的扫视适应,人们知之甚少。由于生长、衰老或骨骼肌肉问题导致眼球运动系统发生变化,这两种类型的扫视都需要适应。这两种扫视类型是否采用共同的适应机制?在这项研究中,我们比较了非灵长类动物中 MGS 和 VGS 的振幅减小适应特征。我们发现 MGS 的适应速度比 VGS 快。在 MGS 适应期间,扫视持续时间发生变化,而在 VGS 适应期间,扫视峰值速度发生变化。我们还比较了适应场,即除适应幅度外,扫视幅度的增益变化。对于较小和较大的适应幅度,MGS 的增益变化都在下降,对于较大的幅度下降更快,而 VGS 的下降则相反。因此,VGS 和 MGS 适应特征之间的差异支持了之前提出的假设,即 VGS 和 MGS 的适应机制是不同的。此外,结果表明 MGS 适应部位是影响扫视持续时间的大脑结构,而 VGS 适应部位影响扫视峰值速度。这些结果应该对未来的神经生理实验有帮助。可塑性有助于克服持续的运动误差。这种运动可塑性或适应可以通过扫视来研究。到目前为止,我们的知识主要是关于视觉引导扫视,这是一种对外界提示的运动,只有在扫视时物体可见时才能进行。然而,由于世界是复杂的,我们甚至可以在物体不可见时进行扫视。在这里,我们研究了一种内部驱动运动的适应:记忆引导扫视。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef26/11302833/b9c474c0f78e/jn-00050-2024r01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验