Wronska Anna K, van den Broek Marcel, Perli Thomas, de Hulster Erik, Pronk Jack T, Daran Jean-Marc
Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
Metab Eng. 2021 Sep;67:88-103. doi: 10.1016/j.ymben.2021.05.006. Epub 2021 May 28.
An oxygen requirement for de novo biotin synthesis in Saccharomyces cerevisiae precludes the application of biotin-prototrophic strains in anoxic processes that use biotin-free media. To overcome this issue, this study explores introduction of the oxygen-independent Escherichia coli biotin-biosynthesis pathway in S. cerevisiae. Implementation of this pathway required expression of seven E. coli genes involved in fatty-acid synthesis and three E. coli genes essential for the formation of a pimelate thioester, key precursor of biotin synthesis. A yeast strain expressing these genes readily grew in biotin-free medium, irrespective of the presence of oxygen. However, the engineered strain exhibited specific growth rates 25% lower in biotin-free media than in biotin-supplemented media. Following adaptive laboratory evolution in anoxic cultures, evolved cell lines that no longer showed this growth difference in controlled bioreactors, were characterized by genome sequencing and proteome analyses. The evolved isolates exhibited a whole-genome duplication accompanied with an alteration in the relative gene dosages of biosynthetic pathway genes. These alterations resulted in a reduced abundance of the enzymes catalyzing the first three steps of the E. coli biotin pathway. The evolved pathway configuration was reverse engineered in the diploid industrial S. cerevisiae strain Ethanol Red. The resulting strain grew at nearly the same rate in biotin-supplemented and biotin-free media non-controlled batches performed in an anaerobic chamber. This study established an unique genetic engineering strategy to enable biotin-independent anoxic growth of S. cerevisiae and demonstrated its portability in industrial strain backgrounds.
酿酒酵母从头合成生物素需要氧气,这使得生物素原养型菌株无法应用于使用无生物素培养基的缺氧过程。为克服这一问题,本研究探索在酿酒酵母中引入不依赖氧气的大肠杆菌生物素生物合成途径。实施该途径需要表达参与脂肪酸合成的7个大肠杆菌基因以及生物素合成关键前体庚二酸硫酯形成所必需的3个大肠杆菌基因。表达这些基因的酵母菌株在无生物素培养基中很容易生长,无论是否存在氧气。然而,工程菌株在无生物素培养基中的比生长速率比在添加生物素的培养基中低25%。在缺氧培养中进行适应性实验室进化后,通过基因组测序和蛋白质组分析对在受控生物反应器中不再表现出这种生长差异的进化细胞系进行了表征。进化后的分离株表现出全基因组复制,同时生物合成途径基因的相对基因剂量发生改变。这些改变导致催化大肠杆菌生物素途径前三个步骤的酶丰度降低。在二倍体工业酿酒酵母菌株乙醇红中对进化后的途径配置进行了反向工程。所得菌株在厌氧箱中进行的添加生物素和无生物素培养基非受控批次中生长速率几乎相同。本研究建立了一种独特的基因工程策略,以实现酿酒酵母不依赖生物素的缺氧生长,并证明了其在工业菌株背景中的可移植性。