Suppr超能文献

利用 Saccharomycotina 酵母的多样性来构建无需生物素的酿酒酵母生长。

Exploiting the Diversity of Saccharomycotina Yeasts To Engineer Biotin-Independent Growth of Saccharomyces cerevisiae.

机构信息

Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.

Department of Biotechnology, Delft University of Technology, Delft, The Netherlands

出版信息

Appl Environ Microbiol. 2020 Jun 2;86(12). doi: 10.1128/AEM.00270-20.

Abstract

Biotin, an important cofactor for carboxylases, is essential for all kingdoms of life. Since native biotin synthesis does not always suffice for fast growth and product formation, microbial cultivation in research and industry often requires supplementation of biotin. biotin biosynthesis in yeasts is not fully understood, which hinders attempts to optimize the pathway in these industrially relevant microorganisms. Previous work based on laboratory evolution of for biotin prototrophy identified Bio1, whose catalytic function remains unresolved, as a bottleneck in biotin synthesis. This study aimed at eliminating this bottleneck in the laboratory strain CEN.PK113-7D. A screening of 35 Saccharomycotina yeasts identified six species that grew fast without biotin supplementation. Overexpression of the () ortholog isolated from one of these biotin prototrophs, , enabled fast growth of strain CEN.PK113-7D in biotin-free medium. Similar results were obtained by single overexpression of () in other laboratory and industrial strains. However, biotin prototrophy was restricted to aerobic conditions, probably reflecting the involvement of oxygen in the reaction catalyzed by the putative oxidoreductase Bio1. In aerobic cultures on biotin-free medium, strains expressing Bio1 showed a decreased susceptibility to contamination by biotin-auxotrophic This study illustrates how the vast Saccharomycotina genomic resources may be used to improve physiological characteristics of industrially relevant The reported metabolic engineering strategy to enable optimal growth in the absence of biotin is of direct relevance for large-scale industrial applications of Important benefits of biotin prototrophy include cost reduction during the preparation of chemically defined industrial growth media as well as a lower susceptibility of biotin-prototrophic strains to contamination by auxotrophic microorganisms. The observed oxygen dependency of biotin synthesis by the engineered strains is relevant for further studies on the elucidation of fungal biotin biosynthesis pathways.

摘要

生物素是羧化酶的重要辅因子,对所有生命领域都是必不可少的。由于原生生物素合成并不总是足以满足快速生长和产物形成的需要,因此在研究和工业中微生物培养通常需要补充生物素。酵母中的生物素生物合成尚未完全理解,这阻碍了试图在这些工业相关微生物中优化途径的尝试。以前基于实验室进化的研究表明,对于生物素原养型,其催化功能仍未解决的 Bio1 是生物素合成的瓶颈。本研究旨在消除实验室菌株 CEN.PK113-7D 中的这一瓶颈。对 35 种酿酒酵母的筛选鉴定了六种不需要生物素补充即可快速生长的物种。从其中一种生物素原养型中分离出的 Bio1 的 () 直系同源物的过表达使 CEN.PK113-7D 菌株能够在无生物素的培养基中快速生长。在其他实验室和工业 菌株中,过表达 () 也获得了类似的结果。然而,生物素原养型仅限于需氧条件,这可能反映了所推测的氧化还原酶 Bio1 催化的反应中氧气的参与。在无生物素的培养基上进行需氧培养时,表达 Bio1 的 菌株对被生物素缺陷型 污染的敏感性降低。本研究说明了如何利用庞大的酿酒酵母基因组资源来改善工业相关 菌株的生理特性。所报道的代谢工程策略可使菌株在缺乏生物素的情况下实现最佳生长,这对于大规模工业应用具有直接意义。生物素原养型的重要优势包括在制备化学定义的工业生长培养基时降低成本,以及生物素原养型菌株对缺陷型微生物污染的敏感性降低。观察到的工程菌株中生物素合成的氧气依赖性对于进一步阐明真菌生物素生物合成途径的研究具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f737/7267198/eb02428bfd34/AEM.00270-20-f0001.jpg

相似文献

3
Engineering Saccharomyces cerevisiae for fast vitamin-independent aerobic growth.
Metab Eng. 2024 Mar;82:201-215. doi: 10.1016/j.ymben.2024.01.010. Epub 2024 Feb 14.
6
Engineering oxygen-independent biotin biosynthesis in Saccharomyces cerevisiae.
Metab Eng. 2021 Sep;67:88-103. doi: 10.1016/j.ymben.2021.05.006. Epub 2021 May 28.
7
Squalene-Tetrahymanol Cyclase Expression Enables Sterol-Independent Growth of Saccharomyces cerevisiae.
Appl Environ Microbiol. 2020 Aug 18;86(17). doi: 10.1128/AEM.00672-20.
9
Identification and characterization of a novel biotin biosynthesis gene in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2005 Nov;71(11):6845-55. doi: 10.1128/AEM.71.11.6845-6855.2005.

引用本文的文献

1
A versatile genetic toolkit for engineering for tetraacetyl phytosphingosine production.
Front Bioeng Biotechnol. 2025 Apr 28;13:1586218. doi: 10.3389/fbioe.2025.1586218. eCollection 2025.
2
Isolation and evaluation of strains to improve cigar tobacco leaves fermentation effect.
Front Microbiol. 2024 Dec 10;15:1492042. doi: 10.3389/fmicb.2024.1492042. eCollection 2024.
3
Quantitative physiology and biomass composition of Cyberlindnera jadinii in ethanol-grown cultures.
Biotechnol Biofuels Bioprod. 2024 Dec 4;17(1):142. doi: 10.1186/s13068-024-02585-3.

本文引用的文献

1
Vitamin requirements and biosynthesis in Saccharomyces cerevisiae.
Yeast. 2020 Apr;37(4):283-304. doi: 10.1002/yea.3461. Epub 2020 Feb 6.
4
The EMBL-EBI search and sequence analysis tools APIs in 2019.
Nucleic Acids Res. 2019 Jul 2;47(W1):W636-W641. doi: 10.1093/nar/gkz268.
5
The Pfam protein families database in 2019.
Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432. doi: 10.1093/nar/gky995.
6
Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: One species, four names.
PLoS Pathog. 2018 Jul 19;14(7):e1007138. doi: 10.1371/journal.ppat.1007138. eCollection 2018 Jul.
8
CRISPR-Cas9 mediated gene deletions in lager yeast Saccharomyces pastorianus.
Microb Cell Fact. 2017 Dec 5;16(1):222. doi: 10.1186/s12934-017-0835-1.
9
Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production.
Curr Opin Biotechnol. 2018 Apr;50:47-56. doi: 10.1016/j.copbio.2017.10.011. Epub 2017 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验