Wu Weiwei, Qin Qingyun, Ding Yan, Zang Huimei, Li Dong-Sheng, Nagarkatti Mitzi, Nagarkatti Prakash, Wang Wenjuan, Wang Xuejun, Cui Taixing
Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States.
Department of Cardiology, Tianjing First Central Hospital, Tianjing, China.
Front Physiol. 2021 May 13;12:673145. doi: 10.3389/fphys.2021.673145. eCollection 2021.
Burgeoning evidence has indicated that normal autophagy is required for nuclear factor erythroid 2-related factor (Nrf2)-mediated cardiac protection whereas autophagy inhibition turns on Nrf2-mediated myocardial damage and dysfunction in a setting of pressure overload (PO). However, such a concept remains to be fully established by a careful genetic interrogation . This study was designed to validate the hypothesis using a mouse model of PO-induced cardiomyopathy and heart failure, in which cardiac autophagy and/or Nrf2 activity are genetically inhibited. Myocardial autophagy inhibition was induced by cardiomyocyte-restricted (CR) knockout (KO) of autophagy related (Atg) 5 (CR-Atg5KO) in adult mice. CR-Atg5KO impaired cardiac adaptations while exacerbating cardiac maladaptive responses in the setting of PO. Notably, it also turned off Nrf2-mediated defense while switching on Nrf2-operated tissue damage in PO hearts. In addition, cardiac autophagy inhibition selectively inactivated extracellular signal regulated kinase (ERK), which coincided with increased nuclear accumulation of Nrf2 and decreased nuclear translocation of activated ERK in cardiomyocytes in PO hearts. Mechanistic investigation revealed that autophagy is required for the activation of ERK, which suppresses Nrf2-driven expression of angiotensinogen in cardiomyocytes. Taken together, these results provide direct evidence consolidating the notion that normal autophagy enables Nrf2-operated adaptation while switching off Nrf2-mediated maladaptive responses in PO hearts partly through suppressing Nrf2-driven angiotensinogen expression in cardiomyocytes.
越来越多的证据表明,正常的自噬是核因子红细胞2相关因子(Nrf2)介导的心脏保护所必需的,而在压力过载(PO)情况下,自噬抑制会引发Nrf2介导的心肌损伤和功能障碍。然而,这一概念仍有待通过细致的基因研究来充分确立。本研究旨在使用PO诱导的心肌病和心力衰竭小鼠模型来验证这一假设,在该模型中,心脏自噬和/或Nrf2活性受到基因抑制。成年小鼠心肌细胞特异性(CR)敲除自噬相关(Atg)5(CR-Atg5KO)可诱导心肌自噬抑制。CR-Atg5KO损害了心脏适应性,同时在PO情况下加剧了心脏的不良适应性反应。值得注意的是,它还关闭了Nrf2介导的防御,同时开启了PO心脏中Nrf2介导的组织损伤。此外,心脏自噬抑制选择性地使细胞外信号调节激酶(ERK)失活,这与PO心脏中Nrf2核内积累增加以及心肌细胞中活化ERK核转位减少相一致。机制研究表明,自噬是ERK激活所必需的,而ERK可抑制心肌细胞中Nrf2驱动的血管紧张素原表达。综上所述,这些结果提供了直接证据,巩固了以下观点:正常自噬可使Nrf2介导的适应性反应得以实现,同时部分通过抑制心肌细胞中Nrf2驱动的血管紧张素原表达,关闭PO心脏中Nrf2介导的不良适应性反应。