Suppr超能文献

键合二维BC双层的第一性原理观察

First-Principles Observation of Bonded 2D BC Bilayers.

作者信息

Shen Jiacai, Zheng Feng, Wang Shaoxian, Zhu Zi-Zhong, Wu Shunqing, Li Xiao-Fei, Cao Xinrui, Luo Yi

机构信息

Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China.

Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.

出版信息

ACS Omega. 2021 May 13;6(20):13218-13224. doi: 10.1021/acsomega.1c01073. eCollection 2021 May 25.

Abstract

Two-dimensional (2D) B-C compounds possess rich allotropic structures with many applications. Obtaining new 2D BC structures is highly desirable due to the novel applications of three-dimensional (3D) BC in protections. In this work, we proposed a new family of 2D BC from the first-principles calculations. Distinct from previous observations, this family of 2D BC consists of bonded 2D BC bilayers. Six different types of bilayers with distinct bonded structures are found. The phonon spectrum calculations and ab initio molecular dynamics simulations at room temperature demonstrate their dynamic and thermal stabilities. Low formation energies suggest the high possibility of realizing such structures in experiments. Rich electronic structures are found, and the predicted Young's moduli are even higher than those of the previous ones. It is revealed that the unique electronic and mechanical properties are rooted in the bonding structures, indicating the prompting applications of this family of 2D BC materials in photovoltaics, nanoelectronics, and nanomechanics.

摘要

二维(2D)B-C化合物具有丰富的同素异形体结构,有许多应用。由于三维(3D)BC在防护方面的新颖应用,获得新的二维BC结构非常必要。在这项工作中,我们通过第一性原理计算提出了一个新的二维BC家族。与之前的观察结果不同,这个二维BC家族由键合的二维BC双层组成。发现了六种具有不同键合结构的双层。室温下的声子谱计算和从头算分子动力学模拟证明了它们的动力学和热稳定性。低形成能表明在实验中实现这种结构的可能性很高。发现了丰富的电子结构,并且预测的杨氏模量甚至高于之前的材料。结果表明,独特的电子和机械性能源于键合结构,这表明该二维BC材料家族在光伏、纳米电子学和纳米力学方面有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84e1/8158795/59cc6db5e83a/ao1c01073_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验