Suppr超能文献

预测二维半导体碳化硼

Predicting two-dimensional semiconducting boron carbides.

作者信息

Tian Xinxin, Xuan Xiaoyu, Yu Meng, Mu Yuewen, Lu Hai-Gang, Zhang Zhuhua, Li Si-Dian

机构信息

Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, P. R. China.

State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education and Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

出版信息

Nanoscale. 2019 Jun 21;11(23):11099-11106. doi: 10.1039/c9nr02681a. Epub 2019 Jun 5.

Abstract

Carbon and boron can mix to form numerous two-dimensional (2D) compounds with strong covalent bonds, yet very few possess a bandgap for functional applications. Motivated by the structural similarity between graphene and recently synthesized borophene, we propose a new family of semiconducting boron carbide monolayers composed of BC pyramids and carbon hexagons, denoted as (BC)(C) (m, n are integers) by means of the global minimum search method augmented with first-principles calculations. These monolayers are isoelectronic to graphene yet exhibit increased bandgaps with decreasing n/m, due to the enhanced localization of boron multicenter bonding states as a consequence of the electronic transfer from boron to carbon. In particular, the BC monolayer is even more stable than the previously synthesized BC monolayer and has a direct bandgap of 2.73 eV, with the promise for applications in optical catalysis and optoelectronics. These results are likely to inform the on-going effort on the design of semiconducting 2D materials based on other light elements.

摘要

碳和硼能够混合形成众多具有强共价键的二维(2D)化合物,但只有极少数具有适用于功能应用的带隙。受石墨烯与最近合成的硼烯之间结构相似性的启发,我们借助结合第一性原理计算的全局最小搜索方法,提出了一个由BC金字塔和碳六边形组成的新型半导体碳化硼单层材料家族,记为(BC)(C)(m、n为整数)。这些单层与石墨烯等电子,但由于硼多中心键合态因硼向碳的电子转移而增强的局域化,随着n/m减小,其带隙增大。特别地,BC单层甚至比先前合成的BC单层更稳定,具有2.73 eV的直接带隙,有望应用于光催化和光电子学。这些结果可能为正在进行的基于其他轻元素的半导体二维材料设计工作提供参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验