Suppr超能文献

利用木质素降解酶和纤维素酶同时进行酶解和糖化来提高木材的糖得率。

Improvement of saccharide yield from wood by simultaneous enzymatic delignification and saccharification using a ligninolytic enzyme and cellulase.

机构信息

Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.

Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.

出版信息

J Biosci Bioeng. 2021 Sep;132(3):213-219. doi: 10.1016/j.jbiosc.2021.04.016. Epub 2021 May 29.

Abstract

White-rot fungi are thought to hold promise for development of a delignification pretreatment process for wood biorefinery that is less energy-consuming than current processes. However, the reaction must take place over weeks and consumes non-neglectable amounts of saccharides. To establish a biological process for wood biorefinery would first require establishment of an enzymatic approach to delignification. Such an approach has the potential to lower costs and reduce saccharide loss. Here, we attempted enzymatic delignification reactions using manganese peroxidases (MnP), a lignin-degrading enzyme, under several reaction conditions. The delignification rate from beech wood meal (particle size <45 μm) of up to 11.0% in 48 h was reached in a MnP reaction supplemented with multiple co-oxidants, glucose, glucose oxidase (GOD) and commercial cellulase. An additional 48-h reaction using fresh MnP/co-oxidants increased the delignification rate to 14.2%. Simultaneous enzymatic delignification and saccharification, which occurs without a need for glucose supplementation, successfully improved the glucose yield to 160% of the reaction without MnP. Development of a more accurate imitation of the mechanisms of delignification that occurs in white-rot fungi has the potential to improve the monosaccharide yield resulting from simultaneous delignification and saccharification.

摘要

白腐真菌有望开发出一种比现有工艺能耗更低的木质纤维生物炼制脱木质素预处理工艺。然而,该反应必须在数周内进行,并消耗不可忽视的糖量。要建立木质纤维生物炼制的生物过程,首先需要建立木质素脱除的酶法途径。这种方法有可能降低成本并减少糖的损失。在这里,我们在几种反应条件下使用锰过氧化物酶(MnP),一种木质素降解酶,尝试进行酶促脱木质素反应。在 MnP 反应中添加多种共氧化剂、葡萄糖、葡萄糖氧化酶(GOD)和商业纤维素酶,可使粒径小于 45 μm 的山毛榉木粉的脱木质素率在 48 h 内达到 11.0%。再进行 48 h 的新鲜 MnP/共氧化剂反应,可将脱木质素率提高到 14.2%。无需补充葡萄糖,就可实现同时进行的酶促脱木质素和糖化作用,这可使没有 MnP 时的葡萄糖得率提高到 160%。更准确地模拟白腐真菌中木质素脱除的机制,有可能提高同时进行的脱木质素和糖化作用的单糖得率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验