Suppr超能文献

通过电流均匀化、几何限制和化学吸附效应的协同耦合实现均匀镁电沉积

Uniform Magnesium Electrodeposition via Synergistic Coupling of Current Homogenization, Geometric Confinement, and Chemisorption Effect.

作者信息

Song Zihao, Zhang Zhonghua, Du Aobing, Dong Shanmu, Li Guicun, Cui Guanglei

机构信息

College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.

Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.

出版信息

Adv Mater. 2021 Jul;33(26):e2100224. doi: 10.1002/adma.202100224. Epub 2021 May 31.

Abstract

Unevenly distributed magnesium (Mg) electrodeposits have emerged as a major obstacle for Mg-metal batteries. A comprehensive design matrix is reported for 3D magnesiophilic hosts, which regulate the uniform Mg electrodeposition through a synergistic coupling of homogenizing current distribution, geometric confinement, and chemisorptive interaction. Vertically aligned nitrogen- and oxygen-doped carbon nanofiber arrays on carbon cloth (denoted as "VNCA@C") are developed as a proof of concept. The evenly arranged short nanoarray architecture helps to homogenize the surface current density and the microchannels built in this 3D host allow the preferential nucleation of Mg due to their geometrical confinement effect. Besides, the nitrogen-/oxygen-doped carbon species exhibit strong chemisorptive interaction toward Mg atoms, providing preferential nucleation sites as demonstrated by first-principle calculation results. Electrochemical analysis reveals a peculiar yet highly reversible microchannel-filling growth behavior of Mg metals, which empowers the delicately designed VNCA@C host with the ability to deliver a reduced nucleation overpotential of 429 mV at 10.0 mA cm and an elongated Mg plating/stripping cycle life (110 cycles) under high current density of 10.0 mA cm . The proposed design matrix can be extended to other metal anodes (such as lithium and zinc) for high-energy-density batteries.

摘要

分布不均的镁(Mg)电沉积物已成为镁金属电池的主要障碍。本文报道了一种针对三维亲镁主体的综合设计矩阵,该矩阵通过均匀电流分布、几何限制和化学吸附相互作用的协同耦合来调节镁的均匀电沉积。作为概念验证,开发了碳布上垂直排列的氮掺杂和氧掺杂碳纳米纤维阵列(表示为“VNCA@C”)。均匀排列的短纳米阵列结构有助于使表面电流密度均匀化,并且这种三维主体中构建的微通道由于其几何限制效应而允许镁优先成核。此外,氮/氧掺杂的碳物种对镁原子表现出强烈的化学吸附相互作用,如第一性原理计算结果所示,提供了优先成核位点。电化学分析揭示了镁金属独特但高度可逆的微通道填充生长行为,这使精心设计的VNCA@C主体能够在10.0 mA cm时提供429 mV的降低成核过电位,并在10.0 mA cm的高电流密度下延长镁电镀/剥离循环寿命(110次循环)。所提出的设计矩阵可扩展到用于高能量密度电池的其他金属阳极(如锂和锌)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验