Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA.
Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA.
J Orthop Res. 2022 Apr;40(4):862-870. doi: 10.1002/jor.25107. Epub 2021 Jun 6.
Bone microarchitectural parameters significantly contribute to implant fixation strength but the role of bone matrix composition is not well understood. To determine the relative contribution of microarchitecture and bone matrix composition to implant fixation strength, we placed titanium implants in 12-week-old intact Sprague-Dawley rats, ovariectomized-Sprague-Dawley rats, and Zucker diabetic fatty rats. We assessed bone microarchitecture by microcomputed tomography, bone matrix composition by Raman spectroscopy, and implant fixation strength at 2, 6, and 10 weeks postimplantation. A stepwise linear regression model accounted for 83.3% of the variance in implant fixation strength with osteointegration volume/total volume (50.4%), peri-implant trabecular bone volume fraction (14.2%), cortical thickness (9.3%), peri-implant trabecular crystallinity (6.7%), and cortical area (2.8%) as the independent variables. Group comparisons indicated that osseointegration volume/total volume was significantly reduced in the ovariectomy group at Week 2 (28%) and Week 10 (21%) as well as in the diabetic group at Week 10 (34%) as compared with the age matched Sprague-Dawley group. The crystallinity of the trabecular bone was significantly elevated in the ovariectomy group at Week 2 (4%) but decreased in the diabetic group at Week 10 (~3%) with respect to the Sprague-Dawley group. Our study is the first to show that bone microarchitecture explains most of the variance in implant fixation strength, but that matrix composition is also a contributing factor. Therefore, treatment strategies aimed at improving bone-implant contact and peri-implant bone volume without compromising matrix quality should be prioritized.
骨微观结构参数对种植体固定强度有重要贡献,但骨基质组成的作用尚不清楚。为了确定微观结构和骨基质组成对种植体固定强度的相对贡献,我们将钛种植体植入 12 周龄的完整 Sprague-Dawley 大鼠、去卵巢 Sprague-Dawley 大鼠和 Zucker 肥胖型糖尿病大鼠体内。我们通过微计算机断层扫描评估骨微观结构,通过拉曼光谱评估骨基质组成,在植入后 2、6 和 10 周评估种植体固定强度。逐步线性回归模型解释了 83.3%的种植体固定强度的方差,其中骨整合体积/总体积(50.4%)、种植体周围小梁骨体积分数(14.2%)、皮质厚度(9.3%)、种植体周围小梁结晶度(6.7%)和皮质面积(2.8%)为独立变量。组间比较表明,与年龄匹配的 Sprague-Dawley 组相比,去卵巢组在第 2 周(28%)和第 10 周(21%),以及糖尿病组在第 10 周(34%),骨整合体积/总体积显著减少。与 Sprague-Dawley 组相比,去卵巢组在第 2 周(4%),但糖尿病组在第 10 周(~3%),小梁骨的结晶度显著升高。我们的研究首次表明,骨微观结构解释了种植体固定强度的大部分变异,但基质组成也是一个影响因素。因此,应该优先考虑旨在改善骨-种植体接触和种植体周围骨量而不损害基质质量的治疗策略。