Chemistry Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, District of Columbia 20375, United States.
U.S. Army, Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States.
Langmuir. 2021 Jun 15;37(23):6923-6934. doi: 10.1021/acs.langmuir.1c00380. Epub 2021 Jun 1.
The promising reactive sorbent zirconium hydroxide (ZH) was challenged with common environmental contaminants (CO, SO, and NO) to determine the impact on chemical warfare agent decomposition. Several environmental adsorbates rapidly formed on the ZH surface through available hydroxyl species and coordinatively unsaturated zirconium sites. ZH decontamination effectiveness was determined using a suite of instrumentation including in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to monitor sarin (GB) decomposition in real time and at ambient pressure. Surface products were characterized by ex situ X-ray photoelectron spectroscopy (XPS). The adsorption enthalpies, entropies, and bond lengths for environmental contaminants and GB decomposition products were estimated using density functional theory (DFT). Consistent with the XPS and DRIFTS results, DFT simulations predicted the relative stabilities of molecular adsorbates and reaction products in the following order: CO < NO < GB ≈ SO. Microbreakthrough capacity measurements on ZH showed a 7-fold increase in the sorption of NO vs SO, which indicates differences in the surface reactivity of these species. GB decomposition was rapid on clean and CO-dosed ZH and showed reduced decomposition on SO- and NO-predosed samples. Despite these findings, the total GB sorption capacity of clean and predosed ZH was consistent across all samples. These data provide insight into the real-world use of ZH as a reactive sorbent for chemical decontamination applications.
具有前景的反应性吸附剂氢氧化锆(ZH)与常见的环境污染物(CO、SO 和 NO)进行了挑战,以确定其对化学战剂分解的影响。通过可用的羟基和配位不饱和锆位,几种环境吸附剂迅速在 ZH 表面形成。使用一系列仪器,包括原位漫反射红外傅里叶变换光谱(DRIFTS),以实时监测沙林(GB)在环境压力下的分解,从而确定 ZH 的去污效果。通过非原位 X 射线光电子能谱(XPS)对表面产物进行了表征。使用密度泛函理论(DFT)估算了环境污染物和 GB 分解产物的吸附焓、熵和键长。与 XPS 和 DRIFTS 结果一致,DFT 模拟预测了分子吸附剂和反应产物的相对稳定性,顺序为:CO <NO <GB ≈SO。ZH 的微穿透容量测量表明,NO 的吸附量比 SO 增加了 7 倍,这表明这些物质的表面反应性存在差异。在清洁和 CO 处理的 ZH 上,GB 的分解速度很快,而在 SO 和 NO 预处理的样品上,GB 的分解速度较慢。尽管有这些发现,但清洁和预处理的 ZH 的总 GB 吸附容量在所有样品中是一致的。这些数据为 ZH 作为化学去污应用的反应性吸附剂的实际应用提供了深入的了解。