Li Tianyu, Tsyshevsky Roman, Algrim Lucas, McEntee Monica, Durke Erin M, Eichhorn Bryan, Karwacki Christopher, Zachariah Michael R, Kuklja Maija M, Rodriguez Efrain E
Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States.
ACS Appl Mater Interfaces. 2021 Nov 17;13(45):54597-54609. doi: 10.1021/acsami.1c16668. Epub 2021 Nov 3.
The increased risk of chemical warfare agent usage around the world has intensified the search for high-surface-area materials that can strongly adsorb and actively decompose chemical warfare agents. Dimethyl methylphosphonate (DMMP) is a widely used simulant molecule in laboratory studies for the investigation of the adsorption and decomposition behavior of sarin (GB) gas. In this paper, we explore how DMMP interacts with the as-synthesized mesoporous CeO. Our mass spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy measurements indicate that DMMP can dissociate on mesoporous CeO at room temperature. Two DMMP dissociation pathways are observed. Based on our characterization of the as-synthesized material, we built the pristine and hydroxylated (110) and (111) CeO surfaces and simulated the DMMP interaction on these surfaces with density functional theory modeling. Our calculations reveal an extremely low activation energy barrier for DMMP dissociation on the (111) pristine CeO surface, which very likely leads to the high activity of mesoporous CeO for DMMP decomposition at room temperature. The two reaction pathways are possibly due to the DMMP dissociation on the pristine and hydroxylated CeO surfaces. The significantly higher activation energy barrier for DMMP to decompose on the hydroxylated CeO surface implies that such a reaction on the hydroxylated CeO surface may occur at higher temperatures or proceed after the pristine CeO surfaces are saturated.
全球化学战剂使用风险的增加,加剧了对能够强烈吸附并有效分解化学战剂的高比表面积材料的研究。在实验室研究中,甲基膦酸二甲酯(DMMP)是一种广泛用于模拟沙林(GB)毒气吸附和分解行为的分子。本文中,我们探究了DMMP与合成的介孔CeO如何相互作用。我们的质谱和漫反射红外傅里叶变换光谱测量表明,DMMP在室温下能在介孔CeO上解离。观察到两条DMMP解离途径。基于对合成材料的表征,我们构建了原始的和羟基化的(110)和(111)CeO表面,并通过密度泛函理论建模模拟了DMMP在这些表面上的相互作用。我们的计算揭示,在(111)原始CeO表面上DMMP解离的活化能垒极低,这很可能导致介孔CeO在室温下对DMMP分解具有高活性。这两条反应途径可能是由于DMMP在原始的和羟基化的CeO表面上的解离。DMMP在羟基化CeO表面分解时显著更高的活化能垒意味着,这种在羟基化CeO表面上的反应可能在更高温度下发生,或者在原始CeO表面饱和后进行。