Suppr超能文献

基于向后消除回归和多层人工神经网络的Ti-6Al-4V板材摩擦现象建模

Modeling of Friction Phenomena of Ti-6Al-4V Sheets Based on Backward Elimination Regression and Multi-Layer Artificial Neural Networks.

作者信息

Trzepieciński Tomasz, Szpunar Marcin, Kaščák Ľuboš

机构信息

Department of Materials Forming and Processing, Rzeszow University of Technology, al. Powst. Warszawy 8, 35-959 Rzeszów, Poland.

Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, Rzeszow University of Technology, al. Powst. Warszawy 12, 35-959 Rzeszów, Poland.

出版信息

Materials (Basel). 2021 May 15;14(10):2570. doi: 10.3390/ma14102570.

Abstract

This paper presents the application of multi-layer artificial neural networks (ANNs) and backward elimination regression for the prediction of values of the coefficient of friction (COF) of Ti-6Al-4V titanium alloy sheets. The results of the strip drawing test were used as data for the training networks. The strip drawing test was carried out under conditions of variable load and variable friction. Selected types of synthetic oils and environmentally friendly bio-degradable lubricants were used in the tests. ANN models were conducted for different network architectures and training methods: the quasi-Newton, Levenberg-Marquardt and back propagation. The values of root mean square (RMS) error and determination coefficient were adopted as evaluation criteria for ANNs. The minimum value of the RMS error for the training set (RMS = 0.0982) and the validation set (RMS = 0.1493) with the highest value of correlation coefficient ( = 0.91) was observed for a multi-layer network with eight neurons in the hidden layer trained using the quasi-Newton algorithm. As a result of the non-linear relationship between clamping and friction force, the value of the COF decreased with increasing load. The regression model F-value of 22.13 implies that the model with = 0.6975 is significant. There is only a 0.01% chance that an F-value this large could occur due to noise.

摘要

本文介绍了多层人工神经网络(ANN)和向后消除回归在预测Ti-6Al-4V钛合金板材摩擦系数(COF)值方面的应用。带钢拉伸试验的结果用作训练网络的数据。带钢拉伸试验在可变载荷和可变摩擦条件下进行。试验中使用了选定类型的合成油和环保型可生物降解润滑剂。针对不同的网络架构和训练方法构建了ANN模型:拟牛顿法、列文伯格-马夸尔特法和反向传播法。均方根(RMS)误差值和决定系数被用作ANN的评估标准。对于使用拟牛顿算法训练的隐藏层中有八个神经元的多层网络,观察到训练集的RMS误差最小值(RMS = 0.0982)和验证集的RMS误差最小值(RMS = 0.1493),且相关系数最高( = 0.91)。由于夹紧力和摩擦力之间的非线性关系,COF值随载荷增加而降低。回归模型的F值为22.13,这意味着 = 0.6975的模型具有显著性。由于噪声而出现如此大F值的可能性仅为0.01%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb2f/8156283/546c17374aa7/materials-14-02570-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验