Suppr超能文献

用于生物椎间盘置换的组织工程构建体的结构促进的生物力学性能调节

Architecture-Promoted Biomechanical Performance-Tuning of Tissue-Engineered Constructs for Biological Intervertebral Disc Replacement.

作者信息

Lang Gernot, Obri Katja, Saravi Babak, Boccaccini Aldo R, Früh Anton, Seidenstücker Michael, Kurz Bodo, Schmal Hagen, Rolauffs Bernd

机构信息

Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany, Hugstetterstrasse 55, 79106 Freiburg, Germany.

Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany.

出版信息

Materials (Basel). 2021 May 20;14(10):2692. doi: 10.3390/ma14102692.

Abstract

BACKGROUND

Biological approaches to intervertebral disc (IVD) restoration and/or regeneration have become of increasing interest. However, the IVD comprises a viscoelastic system whose biological replacement remains challenging. The present study sought to design load-sharing two-component model systems of circular, nested, concentric elements reflecting the nucleus pulposus and annulus fibrosus. Specifically, we wanted to investigate the effect of architectural design variations on (1) model system failure loads when testing the individual materials either separately or homogeneously mixed, and (2) also evaluate the potential of modulating other mechanical properties of the model systems.

METHODS

Two sets of softer and harder biomaterials, 0.5% and 5% agarose vs. 0.5% agarose and gelatin, were used for fabrication. Architectural design variations were realized by varying ring geometries and amounts while keeping the material composition across designs comparable.

RESULTS

Variations in the architectural design, such as lamellar width, number, and order, combined with choosing specific biomaterial properties, strongly influenced the biomechanical performance of IVD constructs. Biomechanical characterization revealed that the single most important parameter, in which the model systems vastly exceeded those of the individual materials, was failure load. The model system failure loads were 32.21- and 84.11-fold higher than those of the agarose materials and 55.03- and 2.14-fold higher than those of the agarose and gelatin materials used for system fabrication. The compressive strength, dynamic stiffness, and viscoelasticity of the model systems were always in the range of the individual materials.

CONCLUSIONS

Relevant architecture-promoted biomechanical performance-tuning of tissue-engineered constructs for biological IVD replacement can be realized by slight modifications in the design of constructs while preserving the materials' compositions. Minimal variations in the architectural design can be used to precisely control structure-function relations for IVD constructs rather than choosing different materials. These fundamental findings have important implications for efficient tissue-engineering of IVDs and other load-bearing tissues, as potential implants need to withstand high in situ loads.

摘要

背景

用于椎间盘(IVD)修复和/或再生的生物学方法已越来越受到关注。然而,IVD是一个粘弹性系统,其生物替代仍然具有挑战性。本研究旨在设计一种由圆形、嵌套、同心元件组成的负载分担双组分模型系统,以反映髓核和纤维环。具体而言,我们希望研究结构设计变化对以下方面的影响:(1)在单独测试或均匀混合单个材料时模型系统的失效载荷,以及(2)评估调节模型系统其他力学性能的潜力。

方法

使用两组较软和较硬的生物材料,即0.5%和5%的琼脂糖与0.5%的琼脂糖和明胶,用于制造。通过改变环的几何形状和数量来实现结构设计的变化,同时保持不同设计的材料组成可比。

结果

结构设计的变化,如层片宽度、数量和顺序,结合选择特定的生物材料特性,强烈影响了IVD构建体的生物力学性能。生物力学表征表明,模型系统大大超过单个材料的最重要参数是失效载荷。模型系统的失效载荷分别比用于系统制造的琼脂糖材料高32.21倍和84.11倍,比琼脂糖和明胶材料高55.03倍和2.14倍。模型系统的抗压强度、动态刚度和粘弹性始终在单个材料的范围内。

结论

通过对构建体设计进行微小修改,同时保持材料组成不变,可以实现用于生物IVD替代的组织工程构建体的相关结构促进生物力学性能调节。结构设计的最小变化可用于精确控制IVD构建体的结构-功能关系,而不是选择不同的材料。这些基本发现对IVD和其他承重组织的高效组织工程具有重要意义,因为潜在的植入物需要承受高原位载荷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2ae/8160686/b661c24bbf66/materials-14-02692-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验