Suppr超能文献

评估单镜头多盒探测器和 YOLO 深度学习模型在温室中检测番茄的性能。

Evaluating the Single-Shot MultiBox Detector and YOLO Deep Learning Models for the Detection of Tomatoes in a Greenhouse.

机构信息

INESC TEC-Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Campus da FEUP, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.

Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.

出版信息

Sensors (Basel). 2021 May 20;21(10):3569. doi: 10.3390/s21103569.

Abstract

The development of robotic solutions for agriculture requires advanced perception capabilities that can work reliably in any crop stage. For example, to automatise the tomato harvesting process in greenhouses, the visual perception system needs to detect the tomato in any life cycle stage (flower to the ripe tomato). The state-of-the-art for visual tomato detection focuses mainly on ripe tomato, which has a distinctive colour from the background. This paper contributes with an annotated visual dataset of green and reddish tomatoes. This kind of dataset is uncommon and not available for research purposes. This will enable further developments in edge artificial intelligence for in situ and in real-time visual tomato detection required for the development of harvesting robots. Considering this dataset, five deep learning models were selected, trained and benchmarked to detect green and reddish tomatoes grown in greenhouses. Considering our robotic platform specifications, only the Single-Shot MultiBox Detector (SSD) and YOLO architectures were considered. The results proved that the system can detect green and reddish tomatoes, even those occluded by leaves. SSD MobileNet v2 had the best performance when compared against SSD Inception v2, SSD ResNet 50, SSD ResNet 101 and YOLOv4 Tiny, reaching an F1-score of 66.15%, an mAP of 51.46% and an inference time of 16.44ms with the NVIDIA Turing Architecture platform, an NVIDIA Tesla T4, with 12 GB. YOLOv4 Tiny also had impressive results, mainly concerning inferring times of about 5 ms.

摘要

农业机器人解决方案的发展需要先进的感知能力,以便能够在任何作物阶段可靠地工作。例如,为了实现温室中番茄的自动化采摘过程,视觉感知系统需要在任何生命周期阶段(从花朵到成熟的番茄)检测到番茄。用于视觉番茄检测的最新技术主要集中在成熟的番茄上,因为成熟的番茄与背景的颜色有明显的区别。本文提供了一个标注的绿色和红色番茄的视觉数据集。这种数据集很少见,也无法用于研究目的。这将促进边缘人工智能在原位和实时视觉番茄检测方面的进一步发展,这是开发采摘机器人所必需的。考虑到这个数据集,我们选择、训练和基准测试了五个深度学习模型,以检测温室中种植的绿色和红色番茄。考虑到我们的机器人平台规格,只考虑了单镜头多盒探测器(SSD)和 YOLO 架构。结果证明,该系统即使在被叶子遮挡的情况下,也能检测到绿色和红色的番茄。与 SSD Inception v2、SSD ResNet 50、SSD ResNet 101 和 YOLOv4 Tiny 相比,SSD MobileNet v2 的性能最好,其 F1 得分为 66.15%,mAP 为 51.46%,在 NVIDIA Turing 架构平台(NVIDIA Tesla T4,12GB)上的推理时间为 16.44ms。YOLOv4 Tiny 的推理时间也非常快,约为 5ms。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c258/8160895/63007f2be3a6/sensors-21-03569-g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验