Suppr超能文献

基于多种变化的户外城市广告看板检测的 SSD 与 YOLO 比较

SSD vs. YOLO for Detection of Outdoor Urban Advertising Panels under Multiple Variabilities.

机构信息

Technical School of Computer Science, Rey Juan Carlos University, 28933 Móstoles, Madrid, Spain.

Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil 090101, Ecuador.

出版信息

Sensors (Basel). 2020 Aug 15;20(16):4587. doi: 10.3390/s20164587.

Abstract

This work compares Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO) deep neural networks for the outdoor advertisement panel detection problem by handling multiple and combined variabilities in the scenes. Publicity panel detection in images offers important advantages both in the real world as well as in the virtual one. For example, applications like Google Street View can be used for Internet publicity and when detecting these ads panels in images, it could be possible to replace the publicity appearing inside the panels by another from a funding company. In our experiments, both SSD and YOLO detectors have produced acceptable results under variable sizes of panels, illumination conditions, viewing perspectives, partial occlusion of panels, complex background and multiple panels in scenes. Due to the difficulty of finding annotated images for the considered problem, we created our own dataset for conducting the experiments. The major strength of the SSD model was the almost elimination of False Positive (FP) cases, situation that is preferable when the publicity contained inside the panel is analyzed after detecting them. On the other side, YOLO produced better panel localization results detecting a higher number of True Positive (TP) panels with a higher accuracy. Finally, a comparison of the two analyzed object detection models with different types of semantic segmentation networks and using the same evaluation metrics is also included.

摘要

这项工作通过处理场景中的多种组合变化,比较了单镜头多盒探测器(SSD)和一次只看一次(YOLO)的深层神经网络,用于户外广告面板检测问题。图像中的宣传面板检测在现实世界和虚拟世界都有重要的优势。例如,谷歌街景等应用程序可以用于互联网宣传,当在图像中检测到这些广告面板时,就可以通过来自资助公司的另一个面板来替换面板内部的广告。在我们的实验中,SSD 和 YOLO 探测器在面板大小、光照条件、观察视角、面板部分遮挡、复杂背景和场景中多个面板等变量下都产生了可以接受的结果。由于难以找到用于考虑问题的注释图像,我们创建了自己的数据集来进行实验。SSD 模型的主要优势是几乎消除了假阳性(FP)情况,这种情况在检测到广告面板后分析其中包含的广告时更为可取。另一方面,YOLO 产生了更好的面板定位结果,检测到更多的真正阳性(TP)面板,准确率更高。最后,还包括使用相同的评估指标,对两种分析的目标检测模型与不同类型的语义分割网络进行比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9745/7472390/ed393f644a28/sensors-20-04587-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验