Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium.
Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium.
Genes (Basel). 2021 May 8;12(5):699. doi: 10.3390/genes12050699.
Mutations in DNA can be limited to one or a few nucleotides, or encompass larger deletions, insertions, duplications, inversions and translocations that span long stretches of DNA or even full chromosomes. These so-called structural variations (SVs) can alter the gene copy number, modify open reading frames, change regulatory sequences or chromatin structure and thus result in major phenotypic changes. As some of the best-known examples of SV are linked to severe genetic disorders, this type of mutation has traditionally been regarded as negative and of little importance for adaptive evolution. However, the advent of genomic technologies uncovered the ubiquity of SVs even in healthy organisms. Moreover, experimental evolution studies suggest that SV is an important driver of evolution and adaptation to new environments. Here, we provide an overview of the causes and consequences of SV and their role in adaptation, with specific emphasis on fungi since these have proven to be excellent models to study SV.
基因突变可以局限于一个或几个核苷酸,也可以包括更大的缺失、插入、重复、倒位和易位,跨越大片的 DNA 甚至整个染色体。这些所谓的结构变异 (SVs) 可以改变基因拷贝数,修饰开放阅读框,改变调控序列或染色质结构,从而导致显著的表型变化。由于一些众所周知的 SV 与严重的遗传疾病有关,这种类型的突变传统上被认为是负面的,对适应性进化的影响不大。然而,基因组技术的出现揭示了 SV 即使在健康的生物体中也普遍存在。此外,实验进化研究表明,SV 是进化和适应新环境的重要驱动力。在这里,我们概述了 SV 的原因和后果及其在适应性中的作用,特别强调了真菌,因为真菌已被证明是研究 SV 的优秀模型。