Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
Nat Commun. 2020 Feb 13;11(1):868. doi: 10.1038/s41467-020-14708-z.
Synthetic biology, genome engineering and directed evolution offer innumerable tools to expedite engineering of strains for optimising biosynthetic pathways. One of the most radical is SCRaMbLE, a system of inducible in vivo deletion and rearrangement of synthetic yeast chromosomes, diversifying the genotype of millions of Saccharomyces cerevisiae cells in hours. SCRaMbLE can yield strains with improved biosynthetic phenotypes but is limited by screening capabilities. To address this bottleneck, we combine automated sample preparation, an ultra-fast 84-second LC-MS method, and barcoded nanopore sequencing to rapidly isolate and characterise the best performing strains. Here, we use SCRaMbLE to optimise yeast strains engineered to produce the triterpenoid betulinic acid. Our semi-automated workflow screens 1,000 colonies, identifying and sequencing 12 strains with between 2- to 7-fold improvement in betulinic acid titre. The broad applicability of this workflow to rapidly isolate improved strains from a variant library makes this a valuable tool for biotechnology.
合成生物学、基因组工程和定向进化为加速优化生物合成途径的菌株工程提供了无数工具。其中最激进的方法之一是 SCRaMbLE,这是一种诱导性的体内删除和合成酵母染色体重排的系统,可以在数小时内使数百万个酿酒酵母细胞的基因型多样化。SCRaMbLE 可以产生具有改进生物合成表型的菌株,但受到筛选能力的限制。为了解决这个瓶颈问题,我们将自动化样品制备、超快速的 84 秒 LC-MS 方法和条形码纳米孔测序相结合,以快速分离和鉴定表现最佳的菌株。在这里,我们使用 SCRaMbLE 来优化工程化生产三萜类白桦脂酸的酵母菌株。我们的半自动工作流程筛选了 1000 个菌落,鉴定并测序了 12 株菌株,其白桦脂酸产量提高了 2-7 倍。该工作流程广泛适用于从变体文库中快速分离改良菌株,使其成为生物技术的有价值工具。