Suppr超能文献

新型双发射荧光碳点作为用于检测铜离子和次氯酸根的比率型探针

Noval Dual-Emission Fluorescence Carbon Dots as a Ratiometric Probe for Cu and ClO Detection.

作者信息

Guo Jiaqing, Liu Aikun, Zeng Yutian, Cai Haojie, Ye Shuai, Li Hao, Yan Wei, Zhou Feifan, Song Jun, Qu Junle

机构信息

Key Laboratory of Optoelectronic Devices and Systems, Center for Biomedical Optics and Photonics (CBOP), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

Moscow Engineering Physics Institute, National Research Nuclear University, MEPhI, 115409 Moscow, Russia.

出版信息

Nanomaterials (Basel). 2021 May 7;11(5):1232. doi: 10.3390/nano11051232.

Abstract

The use of carbon dots (CDs) with dual emission based on ratiometric fluorescence has been attracting attention in recent times for more accurate ion detection since they help avoid interference from background noise, probe concentration, and complexity. Herein, novel dual-emission nitrogen-doped CDs (NCDs) were prepared by a simple method for Cu and ClO detection. The NCDs showed excellent anti-interference ability and selectivity for different emissions. In addition, a good linear relationship was observed between the fluorescence intensity (FI) of the NCD solutions in different emissions with Cu (0-90 μM) and ClO (0-75 μM). The limits of both Cu detection and ClO were very low, at 17.7 and 11.6 nM, respectively. The NCDs developed herein also showed a good recovery rate in water for Cu and ClO detection. Hence, they are expected to have a more extensive application prospect in real samples.

摘要

近年来,基于比率荧光的双发射碳点(CDs)因其有助于避免背景噪声、探针浓度和复杂性的干扰,从而实现更精确的离子检测而备受关注。在此,通过一种简单的方法制备了用于检测铜离子(Cu)和次氯酸根离子(ClO)的新型双发射氮掺杂碳点(NCDs)。NCDs对不同发射表现出优异的抗干扰能力和选择性。此外,在不同发射下,NCDs溶液的荧光强度(FI)与Cu(0 - 90 μM)和ClO(0 - 75 μM)之间呈现出良好的线性关系。Cu和ClO的检测限都非常低,分别为17.7和11.6 nM。本文所制备的NCDs在水中对Cu和ClO的检测也显示出良好的回收率。因此,它们有望在实际样品中具有更广泛的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f8c/8150300/f79c2bb92e42/nanomaterials-11-01232-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验