Dehesa Jesús S
Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada, Spain.
Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, 18071 Granada, Spain.
Entropy (Basel). 2021 May 14;23(5):607. doi: 10.3390/e23050607.
The spreading of the stationary states of the multidimensional single-particle systems with a central potential is quantified by means of Heisenberg-like measures (radial and logarithmic expectation values) and entropy-like quantities (Fisher, Shannon, Rényi) of position and momentum probability densities. Since the potential is assumed to be analytically unknown, these dispersion and information-theoretical measures are given by means of inequality-type relations which are explicitly shown to depend on dimensionality and state's angular hyperquantum numbers. The spherical-symmetry and spin effects on these spreading properties are obtained by use of various integral inequalities (Daubechies-Thakkar, Lieb-Thirring, Redheffer-Weyl, ...) and a variational approach based on the extremization of entropy-like measures. Emphasis is placed on the uncertainty relations, upon which the essential reason of the probabilistic theory of quantum systems relies.
通过类似海森堡的测度(径向和对数期望值)以及位置和动量概率密度的类熵量(费希尔熵、香农熵、雷尼熵),对具有中心势的多维单粒子系统定态的展宽进行了量化。由于势被假定为解析未知的,这些色散和信息理论测度通过不等式类型的关系给出,这些关系被明确证明依赖于维度和态的角超量子数。通过使用各种积分不等式(道布希斯 - 萨卡尔不等式、利布 - 蒂林不等式、雷德黑弗 - 外尔不等式等)以及基于类熵量极值化的变分方法,得到了这些展宽性质的球对称性和自旋效应。重点在于不确定性关系,量子系统概率理论的本质原因依赖于此。