Suppr超能文献

球对称性和自旋对具有中心势的多维量子系统不确定性度量的影响。

Spherical-Symmetry and Spin Effects on the Uncertainty Measures of Multidimensional Quantum Systems with Central Potentials.

作者信息

Dehesa Jesús S

机构信息

Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada, Spain.

Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, 18071 Granada, Spain.

出版信息

Entropy (Basel). 2021 May 14;23(5):607. doi: 10.3390/e23050607.

Abstract

The spreading of the stationary states of the multidimensional single-particle systems with a central potential is quantified by means of Heisenberg-like measures (radial and logarithmic expectation values) and entropy-like quantities (Fisher, Shannon, Rényi) of position and momentum probability densities. Since the potential is assumed to be analytically unknown, these dispersion and information-theoretical measures are given by means of inequality-type relations which are explicitly shown to depend on dimensionality and state's angular hyperquantum numbers. The spherical-symmetry and spin effects on these spreading properties are obtained by use of various integral inequalities (Daubechies-Thakkar, Lieb-Thirring, Redheffer-Weyl, ...) and a variational approach based on the extremization of entropy-like measures. Emphasis is placed on the uncertainty relations, upon which the essential reason of the probabilistic theory of quantum systems relies.

摘要

通过类似海森堡的测度(径向和对数期望值)以及位置和动量概率密度的类熵量(费希尔熵、香农熵、雷尼熵),对具有中心势的多维单粒子系统定态的展宽进行了量化。由于势被假定为解析未知的,这些色散和信息理论测度通过不等式类型的关系给出,这些关系被明确证明依赖于维度和态的角超量子数。通过使用各种积分不等式(道布希斯 - 萨卡尔不等式、利布 - 蒂林不等式、雷德黑弗 - 外尔不等式等)以及基于类熵量极值化的变分方法,得到了这些展宽性质的球对称性和自旋效应。重点在于不确定性关系,量子系统概率理论的本质原因依赖于此。

相似文献

5
Information theory and thermodynamic properties of diatomic molecules using molecular potential.
J Mol Model. 2023 Sep 12;29(10):311. doi: 10.1007/s00894-023-05708-z.
6
From Rényi Entropy Power to Information Scan of Quantum States.
Entropy (Basel). 2021 Mar 12;23(3):334. doi: 10.3390/e23030334.
7
Quantum Information Entropy for Another Class of New Proposed Hyperbolic Potentials.
Entropy (Basel). 2023 Sep 5;25(9):1296. doi: 10.3390/e25091296.
9
Quantum Information Entropies on Hyperbolic Single Potential Wells.
Entropy (Basel). 2022 Apr 26;24(5):604. doi: 10.3390/e24050604.
10
Interacting electrons, spin statistics, and information theory.
J Chem Phys. 2010 Jan 7;132(1):014106. doi: 10.1063/1.3280953.

引用本文的文献

本文引用的文献

1
The power of quantum neural networks.
Nat Comput Sci. 2021 Jun;1(6):403-409. doi: 10.1038/s43588-021-00084-1. Epub 2021 Jun 24.
2
From Rényi Entropy Power to Information Scan of Quantum States.
Entropy (Basel). 2021 Mar 12;23(3):334. doi: 10.3390/e23030334.
3
Entanglement-Ergodic Quantum Systems Equilibrate Exponentially Well.
Phys Rev Lett. 2019 Nov 15;123(20):200604. doi: 10.1103/PhysRevLett.123.200604.
4
Probing Rényi entanglement entropy via randomized measurements.
Science. 2019 Apr 19;364(6437):260-263. doi: 10.1126/science.aau4963. Epub 2019 Apr 18.
5
The informational entropy endowed in cortical oscillations.
Cogn Neurodyn. 2018 Oct;12(5):501-507. doi: 10.1007/s11571-018-9491-3. Epub 2018 Jun 18.
6
Rényi Entropies from Random Quenches in Atomic Hubbard and Spin Models.
Phys Rev Lett. 2018 Feb 2;120(5):050406. doi: 10.1103/PhysRevLett.120.050406.
7
Quantum thermalization through entanglement in an isolated many-body system.
Science. 2016 Aug 19;353(6301):794-800. doi: 10.1126/science.aaf6725.
8
One-parameter class of uncertainty relations based on entropy power.
Phys Rev E. 2016 Jun;93(6):060104. doi: 10.1103/PhysRevE.93.060104. Epub 2016 Jun 29.
9
Measuring entanglement entropy in a quantum many-body system.
Nature. 2015 Dec 3;528(7580):77-83. doi: 10.1038/nature15750.
10
Fisher Information Study in Position and Momentum Spaces for Elementary Chemical Reactions.
J Chem Theory Comput. 2010 Jan 12;6(1):145-54. doi: 10.1021/ct900544m. Epub 2009 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验