Dehesa Jesús S
Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, 18071 Granada, Spain.
Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada, Spain.
Entropy (Basel). 2022 Nov 2;24(11):1590. doi: 10.3390/e24111590.
The various facets of the internal disorder of quantum systems can be described by means of the Rényi entropies of their single-particle probability density according to modern density functional theory and quantum information techniques. In this work, we first show the lower and upper bounds for the Rényi entropies of general and central-potential quantum systems, as well as the associated entropic uncertainty relations. Then, the Rényi entropies of multidimensional oscillator and hydrogenic-like systems are reviewed and explicitly determined for all bound stationary position and momentum states from first principles (i.e., in terms of the potential strength, the space dimensionality and the states's hyperquantum numbers). This is possible because the associated wavefunctions can be expressed by means of hypergeometric orthogonal polynomials. Emphasis is placed on the most extreme, non-trivial cases corresponding to the highly excited Rydberg states, where the Rényi entropies can be amazingly obtained in a simple, compact, and transparent form. Powerful asymptotic approaches of approximation theory have been used when the polynomial's degree or the weight-function parameter(s) of the Hermite, Laguerre, and Gegenbauer polynomials have large values. At present, these special states are being shown of increasing potential interest in quantum information and the associated quantum technologies, such as e.g., quantum key distribution, quantum computation, and quantum metrology.
根据现代密度泛函理论和量子信息技术,量子系统内部无序的各个方面可以通过其单粒子概率密度的雷尼熵来描述。在这项工作中,我们首先展示了一般和中心势量子系统的雷尼熵的上下界,以及相关的熵不确定关系。然后,从第一原理出发(即根据势强度、空间维度和态的超量子数),对多维振子和类氢系统的雷尼熵进行了回顾,并明确确定了所有束缚定态位置和动量态的雷尼熵。这是可行的,因为相关的波函数可以用超几何正交多项式表示。重点放在与高激发里德堡态相对应的最极端、非平凡的情况上,在这些情况下,可以以简单、紧凑和透明的形式惊人地得到雷尼熵。当埃尔米特多项式、拉盖尔多项式和盖根堡多项式的次数或权函数参数值很大时,使用了强大的渐近近似理论方法。目前,这些特殊态在量子信息及相关量子技术(如量子密钥分发、量子计算和量子计量)中显示出越来越大的潜在兴趣。