Suppr超能文献

使用双光子激光诱导干涉光刻技术对增材制造零件进行同步微结构化和表面平滑处理及其对润湿性的影响。

Simultaneous Micro-Structuring and Surface Smoothing of Additive Manufactured Parts Using DLIP Technique and Its Influence on the Wetting Behaviour.

作者信息

Kuisat Florian, Ränke Fabian, Lasagni Fernando, Lasagni Andrés Fabián

机构信息

Institut für Fertigungstechnik, Technische Universität Dresden, George-Baehr-Str. 3c, 01069 Dresden, Germany.

CATEC Advanced Center for Aerospace Technologies, C/Wilbur y Orville Wright 19, 41309 La Rinconada, Seville, Spain.

出版信息

Materials (Basel). 2021 May 14;14(10):2563. doi: 10.3390/ma14102563.

Abstract

It is well known that the surface topography of a part can affect its function as well as its mechanical performance. In this context, we report on the surface modification of additive manufactured components made of Titanium 64 and Scalmalloy, using Direct Laser Interference Patterning technique. In our experiments, a nanosecond-pulsed near-infrared laser source with a pulse duration of 10 ns was used. By varying the process parameters, periodic structures with different depths and associated roughness values are produced. Additionally, the influence of the resultant morphological characteristics on the wettability behaviour of the fabricated textures is investigated by means of contact angle measurements. The results demonstrated a reduction of the surface roughness of the additive manufactured parts (in the order of some tens of micrometres) and simultaneously the production of well-defined micro-patterns (in the micrometre range), which allow the wettability of the surfaces from 26° and 16° up to 93° and 131° to be tuned for Titanium 6Al 4V and Al-Mg-Sc (Scalmalloy), respectively.

摘要

众所周知,零件的表面形貌会影响其功能以及机械性能。在此背景下,我们报告了使用直接激光干涉图案化技术对由钛64和Scalmalloy制成的增材制造部件进行表面改性的情况。在我们的实验中,使用了脉冲持续时间为10 ns的纳秒脉冲近红外激光源。通过改变工艺参数,可产生具有不同深度和相关粗糙度值的周期性结构。此外,通过接触角测量研究了所得形态特征对制造纹理的润湿性行为的影响。结果表明,增材制造零件的表面粗糙度降低了(几十微米的量级),同时产生了定义明确的微图案(微米范围),这使得钛6Al 4V和Al-Mg-Sc(Scalmalloy)表面的润湿性分别从26°和16°调整到93°和131°。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc0c/8156307/03ed84dc80f1/materials-14-02563-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验