Baranowski Paweł, Damaziak Krzysztof
Institute of Mechanics & Computational Engineering, Faculty of Mechanical Engineering, Military University of Technology, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland.
Materials (Basel). 2021 May 25;14(11):2822. doi: 10.3390/ma14112822.
In this paper, numerical simulations of the EN 12767 test procedure for a vehicle-lighting pole crash are presented. A representative soil-vehicle-lighting pole model is first developed. The Geo Metro vehicle model is used, and significant attention is given to representing the soil and its interaction with the traffic pole. Soil is represented using smoothed particle hydrodynamics (SPH) coupled with finite elements (FEs). A parametric study is carried out to investigate the key factors influencing the outcomes and consequently the estimation of the occupant safety levels during crash scenario described in EN 12767. First, a sensitivity study of lighting pole mesh is conducted As a result, the optimal mesh size is used for further studies regarding physical parameters such as soil properties and friction coefficient in vehicle-pole interfaces. Friction and mesh size are found to have a considerable influence on the acceleration severity index (ASI), theoretical head impact velocity (THIV), post-impact velocity and vehicle behavior during the lighting pole crash scenario.
本文给出了车辆与照明杆碰撞的EN 12767测试程序的数值模拟。首先建立了一个具有代表性的土壤-车辆-照明杆模型。使用了Geo Metro车辆模型,并特别关注土壤的表征及其与交通杆的相互作用。土壤采用光滑粒子流体动力学(SPH)与有限元(FE)相结合的方法来表示。进行了参数研究,以调查影响结果的关键因素,并进而评估EN 12767中描述的碰撞场景下的乘员安全水平。首先,对照明杆网格进行了敏感性研究。结果,将最优网格尺寸用于关于诸如土壤特性和车辆与杆界面处的摩擦系数等物理参数的进一步研究。发现在照明杆碰撞场景中,摩擦力和网格尺寸对加速度严重程度指数(ASI)、理论头部撞击速度(THIV)、撞击后速度和车辆行为有相当大的影响。