Suppr超能文献

基于具有增强探索和开发能力的裸鼹鼠算法的FFF工艺参数优化

Optimization of FFF Process Parameters by Naked Mole-Rat Algorithms with Enhanced Exploration and Exploitation Capabilities.

作者信息

Chohan Jasgurpreet Singh, Mittal Nitin, Kumar Raman, Singh Sandeep, Sharma Shubham, Dwivedi Shashi Prakash, Saxena Ambuj, Chattopadhyaya Somnath, Ilyas Rushdan A, Le Chi Hieu, Wojciechowski Szymon

机构信息

Department of Mechanical Engineering, Chandigarh University, Mohali 140413, India.

Department of Electronics and Communication Engineering, Chandigarh University, Mohali 140413, India.

出版信息

Polymers (Basel). 2021 May 23;13(11):1702. doi: 10.3390/polym13111702.

Abstract

Fused filament fabrication (FFF) has numerous process parameters that influence the mechanical strength of parts. Hence, many optimization studies are performed using conventional tools and algorithms. Although studies have also been performed using advanced algorithms, limited research has been reported in which variants of the naked mole-rat algorithm (NMRA) are implemented for solving the optimization issues of manufacturing processes. This study was performed to scrutinize optimum parameters and their levels to attain maximum impact strength, flexural strength and tensile strength based on five different FFF process parameters. The algorithm yielded better results than other studies and successfully achieved a maximum response, which may be helpful to enhance the mechanical strength of FFF parts. The study opens a plethora of research prospects for implementing NMRA in manufacturing. Moreover, the findings may help identify critical parametric levels for the fabrication of customized products at the commercial level and help to attain the objectives of Industry 4.0.

摘要

熔融长丝制造(FFF)有许多影响零件机械强度的工艺参数。因此,许多优化研究是使用传统工具和算法进行的。尽管也有使用先进算法进行的研究,但报道的有限研究中,很少有采用裸鼹鼠算法(NMRA)变体来解决制造工艺优化问题的。本研究旨在基于五个不同的FFF工艺参数,仔细研究最佳参数及其水平,以获得最大冲击强度、抗弯强度和抗拉强度。该算法比其他研究产生了更好的结果,并成功实现了最大响应,这可能有助于提高FFF零件的机械强度。该研究为在制造中实施NMRA开辟了大量研究前景。此外,研究结果可能有助于确定商业层面定制产品制造的关键参数水平,并有助于实现工业4.0的目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2852/8196965/fd89023aa60e/polymers-13-01702-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验