Park Sion, Flüthmann Pia, Wolany Carla, Goedecke Lena, Spenner Hannah Maleen, Budde Thomas, Pape Hans-Christian, Jüngling Kay
Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Robert-Koch Strasse 27a, 48149 Münster, Germany.
Pharmaceuticals (Basel). 2021 May 27;14(6):519. doi: 10.3390/ph14060519.
The neuropeptide S system, consisting of the 20 amino acid neuropeptide NPS and its G-protein-coupled receptor (GPCR) neuropeptide S receptor 1 (NPSR1), has been studied intensively in rodents. Although there is a lot of data retrieved from behavioral studies using pharmacology or genetic interventions, little is known about intracellular signaling cascades in neurons endogenously expressing the NPSR1.
To elucidate possible G-protein-dependent signaling and effector systems, we performed whole-cell patch-clamp recordings on principal neurons of the anterior basolateral amygdala of mice. We used pharmacological interventions to characterize the NPSR1-mediated current induced by NPS application.
Application of NPS reliably evokes inward-directed currents in amygdalar neurons recorded in brain slice preparations of male and female mice. The NPSR1-mediated current had a reversal potential near the potassium reversal potential (E) and was accompanied by an increase in membrane input resistance. GDP-β-S and BAPTA, but neither adenylyl cyclase inhibition nor 8-Br-cAMP, abolished the current. Intracellular tetraethylammonium or 4-aminopyridine reduced the NPS-evoked current.
NPSR1 activation in amygdalar neurons inhibits voltage-gated potassium (K) channels, most likely members of the delayed rectifier family. Intracellularly, G signaling and calcium ions seem to be mandatory for the observed current and increased neuronal excitability.
神经肽S系统由20个氨基酸的神经肽NPS及其G蛋白偶联受体(GPCR)神经肽S受体1(NPSR1)组成,已在啮齿动物中进行了深入研究。尽管通过药理学或基因干预的行为研究获得了大量数据,但对于内源性表达NPSR1的神经元中的细胞内信号级联反应却知之甚少。
为了阐明可能的G蛋白依赖性信号传导和效应系统,我们对小鼠前基底外侧杏仁核的主要神经元进行了全细胞膜片钳记录。我们使用药理学干预来表征NPS应用诱导的NPSR1介导的电流。
在雄性和雌性小鼠脑片制备中记录的杏仁核神经元中,NPS的应用可靠地诱发内向电流。NPSR1介导的电流在钾反转电位(E)附近具有反转电位,并伴随着膜输入电阻的增加。GDP-β-S和BAPTA消除了电流,但腺苷酸环化酶抑制或8-Br-cAMP均未消除电流。细胞内四乙铵或4-氨基吡啶降低了NPS诱发的电流。
杏仁核神经元中的NPSR1激活抑制电压门控钾(K)通道,最有可能是延迟整流器家族的成员。在细胞内,G信号传导和钙离子似乎是观察到的电流和神经元兴奋性增加所必需的。