Suppr超能文献

基于脑电图的心肺复苏期间颈动脉血流恢复的预测:猪模型研究。

EEG-Based Prediction of the Recovery of Carotid Blood Flow during Cardiopulmonary Resuscitation in a Swine Model.

机构信息

Clinical Trials Center, Seoul National University Hospital, Seoul 03080, Korea.

Department of Emergency Medicine, Seoul National University Hospital, Seoul 03080, Korea.

出版信息

Sensors (Basel). 2021 May 24;21(11):3650. doi: 10.3390/s21113650.

Abstract

The recovery of cerebral circulation during cardiopulmonary resuscitation (CPR) is important to improve the neurologic outcomes of cardiac arrest patients. To evaluate the feasibility of an electroencephalogram (EEG)-based prediction model as a CPR feedback indicator of high- or low-CBF carotid blood flow (CBF), the frontal EEG and hemodynamic data including CBF were measured during animal experiments with a ventricular fibrillation (VF) swine model. The most significant 10 EEG parameters in the time, frequency and entropy domains were determined by neighborhood component analysis and Student's -test for discriminating high- or low-CBF recovery with a division criterion of 30%. As a binary CBF classifier, the performances of logistic regression, support vector machine (SVM), k-nearest neighbor, random forest and multilayer perceptron algorithms were compared with eight-fold cross-validation. The three-order polynomial kernel-based SVM model showed the best accuracy of 0.853. The sensitivity, specificity, F1 score and area under the curve of the SVM model were 0.807, 0.906, 0.853 and 0.909, respectively. An automated CBF classifier derived from non-invasive EEG is feasible as a potential indicator of the CBF recovery during CPR in a VF swine model.

摘要

心肺复苏期间脑循环的恢复对改善心搏骤停患者的神经预后很重要。为了评估基于脑电图(EEG)的预测模型作为心肺复苏反馈指标,以预测高或低脑血流量(CBF)颈动脉血流的可行性,我们在心室颤动(VF)猪模型的动物实验中测量了额部 EEG 和包括 CBF 在内的血流动力学数据。通过邻域成分分析和学生 t 检验,确定了时间、频率和熵域中最显著的 10 个 EEG 参数,以 30%的分割标准来区分高或低 CBF 恢复。作为一个二元 CBF 分类器,我们比较了逻辑回归、支持向量机(SVM)、k-最近邻、随机森林和多层感知机算法的性能,采用了 8 倍交叉验证。三阶多项式核 SVM 模型的准确率最高,为 0.853。SVM 模型的灵敏度、特异性、F1 评分和曲线下面积分别为 0.807、0.906、0.853 和 0.909。源自非侵入性 EEG 的自动 CBF 分类器可作为 VF 猪模型心肺复苏期间 CBF 恢复的潜在指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8863/8197348/be1518e94411/sensors-21-03650-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验