Suppr超能文献

带全状态约束的非线性系统的时/事件触发自适应神经渐近跟踪控制及其在单连杆机器人中的应用。

Time-/Event-Triggered Adaptive Neural Asymptotic Tracking Control for Nonlinear Systems With Full-State Constraints and Application to a Single-Link Robot.

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Nov;33(11):6690-6700. doi: 10.1109/TNNLS.2021.3082994. Epub 2022 Oct 27.

Abstract

This study proposes the time-/event-triggered adaptive neural control strategies for the asymptotic tracking problem of a class of uncertain nonlinear systems with full-state constraints. First, we design a time-triggered strategy. The effect caused by the residuals of the estimation via radial basis function (RBF) neural networks (NNs), and the reasonable upper bounds on the first derivative of the reference signal and the derivative of each virtual control, can be eliminated by designing appropriate adaptive laws and utilizing the basic properties of RBF NNs. Moreover, the construction of the barrier Lyapunov functions (BLFs) in this work ensures the compliance of the full-state constraints and also holds the asymptotic output tracking performance. Then, based on the time-triggered strategy, we further design a relative threshold event-triggered strategy. The proposed event-triggered adaptive neural controller can solve the main control objective of this work, that is: 1) the full-state constraint requirements of the system are not violated and 2) the output signal asymptotically tracks the reference signal. Compared with the traditional method, the event-triggered strategy can improve the utilization of communication channels and resources and has greater practical significance. Finally, an example of single-link robot under the proposed two strategies illustrates the validity of the constructed controllers.

摘要

本研究提出了一种针对具有全状态约束的一类不确定非线性系统的渐近跟踪问题的时/事件触发自适应神经网络控制策略。首先,我们设计了一种时触发策略。通过设计适当的自适应律并利用 RBF 神经网络(NN)的基本性质,可以消除通过径向基函数(RBF)NN 进行估计的残差以及参考信号的一阶导数和每个虚拟控制的导数的合理上界的影响。此外,在这项工作中构建的障碍李雅普诺夫函数(BLF)确保了全状态约束的合规性,并保持了渐近输出跟踪性能。然后,基于时触发策略,我们进一步设计了一个相对阈值事件触发策略。所提出的事件触发自适应神经网络控制器可以解决这项工作的主要控制目标,即:1)系统的全状态约束要求不被违反;2)输出信号渐近跟踪参考信号。与传统方法相比,事件触发策略可以提高通信通道和资源的利用率,具有更大的实际意义。最后,单连杆机器人的一个例子说明了所提出的两种策略下构建的控制器的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验