IEEE Trans Cybern. 2022 Jul;52(7):6662-6675. doi: 10.1109/TCYB.2021.3079311. Epub 2022 Jul 4.
Applying image-based processing methods to original videos on a framewise level breaks the temporal consistency between consecutive frames. Traditional video temporal consistency methods reconstruct an original frame containing flickers from corresponding nonflickering frames, but the inaccurate correspondence realized by optical flow restricts their practical use. In this article, we propose a temporally broad learning system (TBLS), an approach that enforces temporal consistency between frames. We establish the TBLS as a flat network comprising the input data, consisting of an original frame in an original video, a corresponding frame in the temporally inconsistent video on which the image-based technique was applied, and an output frame of the last original frame, as mapped features in feature nodes. Then, we refine extracted features by enhancing the mapped features as enhancement nodes with randomly generated weights. We then connect all extracted features to the output layer with a target weight vector. With the target weight vector, we can minimize the temporal information loss between consecutive frames and the video fidelity loss in the output videos. Finally, we remove the temporal inconsistency in the processed video and output a temporally consistent video. Besides, we propose an alternative incremental learning algorithm based on the increment of the mapped feature nodes, enhancement nodes, or input data to improve learning accuracy by a broad expansion. We demonstrate the superiority of our proposed TBLS by conducting extensive experiments.
将基于图像的处理方法应用于逐帧的原始视频会打破连续帧之间的时间一致性。传统的视频时间一致性方法从相应的非闪烁帧中重建包含闪烁的原始帧,但光流实现的不准确对应限制了它们的实际应用。在本文中,我们提出了一个时间广泛学习系统(TBLS),这是一种强制帧之间时间一致性的方法。我们将 TBLS 建立为一个平面网络,包括输入数据,由原始视频中的原始帧、应用基于图像的技术的时间不一致视频中的相应帧以及最后原始帧的输出帧组成,这些帧作为特征节点中的映射特征。然后,我们通过增强映射特征作为增强节点并随机生成权重来细化提取的特征。然后,我们将所有提取的特征与输出层连接起来,使用目标权重向量。利用目标权重向量,我们可以最小化连续帧之间的时间信息损失和输出视频中的视频保真度损失。最后,我们消除处理后的视频中的时间不一致性,并输出一个时间一致的视频。此外,我们提出了一种基于映射特征节点、增强节点或输入数据增量的替代增量学习算法,通过广泛扩展来提高学习准确性。我们通过广泛的实验证明了我们提出的 TBLS 的优越性。