Suppr超能文献

基因组分类器在间质性肺疾病患者中的应用:一项系统评价和荟萃分析。

Use of a Genomic Classifier in Patients with Interstitial Lung Disease: A Systematic Review and Meta-Analysis.

作者信息

Kheir Fayez, Uribe Becerra Juan Pablo, Bissell Brittany, Ghazipura Marya, Herman Derrick, Hon Stephanie M, Hossain Tanzib, Khor Yet H, Knight Shandra L, Kreuter Michael, Macrea Madalina, Mammen Manoj J, Martinez Fernando J, Poletti Venerino, Troy Lauren, Raghu Ganesh, Wilson Kevin C

机构信息

Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.

Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center and Harvard Medical School, Harvard University, Boston, Massachusetts.

出版信息

Ann Am Thorac Soc. 2022 May;19(5):827-832. doi: 10.1513/AnnalsATS.202102-197OC.

Abstract

Usual interstitial pneumonia (UIP) is the histopathologic hallmark of idiopathic pulmonary fibrosis (IPF), the prototypical interstitial lung disease (ILD). Diagnosis of IPF requires that a typical UIP pattern be identified by using high-resolution chest computed tomography or lung sampling. A genomic classifier for UIP has been developed to predict histopathologic UIP by using lung samples obtained through bronchoscopy. To perform a systematic review to evaluate genomic classifier testing in the detection of histopathologic UIP to inform new American Thoracic Society, European Respiratory Society, Japanese Respiratory Society, and Asociación Latinoamericana del Tórax guidelines. Medline, Embase, and the Cochrane Central Register of Controlled Trials were searched through June 2020. Data were extracted from studies that enrolled patients with ILD and reported the use of genomic classifier testing. Data were aggregated across studies via meta-analysis. The quality of the evidence was appraised by using the Grading of Recommendations, Assessment, Development, and Evaluation approach. Genomic classifier testing had a sensitivity of 68% (95% confidence interval [CI], 55-73%) and a specificity of 92% (95% CI, 81-95%) in predicting the UIP pattern in ILD. Confidence in an IPF diagnosis increased from 43% to 93% in one cohort and from 59% to 89% in another cohort. Agreement levels in categorical IPF and non-IPF diagnoses measured by using a concordance coefficient were 0.75 and 0.64 in the two cohorts. The quality of evidence was moderate for test characteristics and very low for both confidence and agreement. Genomic classifier testing predicts histopathologic UIP in patients with ILD with a specificity of 92% and improves diagnostic confidence; however, sensitivity is only 68%, and testing is not widely available.

摘要

普通型间质性肺炎(UIP)是特发性肺纤维化(IPF)的组织病理学标志,IPF是典型的间质性肺疾病(ILD)。IPF的诊断需要通过高分辨率胸部计算机断层扫描或肺活检确定典型的UIP模式。已经开发了一种UIP基因分类器,通过使用经支气管镜获得的肺样本预测组织病理学UIP。进行系统评价以评估基因分类器检测在组织病理学UIP检测中的作用,为美国胸科学会、欧洲呼吸学会、日本呼吸学会和拉丁美洲胸科学会的新指南提供依据。检索了截至2020年6月的Medline、Embase和Cochrane对照试验中央注册库。从纳入ILD患者并报告使用基因分类器检测的研究中提取数据。通过荟萃分析汇总各研究的数据。采用推荐分级、评估、制定和评价方法评估证据质量。基因分类器检测在预测ILD中的UIP模式时,敏感性为68%(95%置信区间[CI],55-73%),特异性为92%(95%CI,81-95%)。在一个队列中,对IPF诊断的信心从43%提高到93%,在另一个队列中从59%提高到89%。在两个队列中,使用一致性系数测量的IPF和非IPF分类诊断的一致性水平分别为0.75和0.64。证据质量在检测特征方面为中等,在信心和一致性方面均非常低。基因分类器检测以92%的特异性预测ILD患者的组织病理学UIP,并提高诊断信心;然而,敏感性仅为68%,且检测尚未广泛应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验