Suppr超能文献

开发一种用于估算芭蕾舞舞者髋关节和腰椎角度的机器学习模型。

Development of a Machine Learning Model for the Estimation of Hip and Lumbar Angles in Ballet Dancers.

机构信息

School of Allied Health, Curtin University, GPO Box U 1987, Perth WA 6845, Australia. Tel +618 92664644.

出版信息

Med Probl Perform Art. 2021 Jun;36(2):61-71. doi: 10.21091/mppa.2021.2009.

Abstract

OBJECTIVE

Accurate field-based assessment of dance kinematics is important to understand the etiology, and thus prevention and management, of hip and back pain. The study objective was to develop a machine learning model to estimate thigh elevation and lumbar sagittal plane angles during ballet leg lifting tasks, using wearable sensor data.

METHODS

Female dancers (n=30) performed ballet-specific leg lifting tasks to the front, side, and behind the body. Dancers wore six wearable sensors (100 Hz). Data were simultaneously collected using an 18-camera motion analysis system (250 Hz). Due to synchronization and hardware malfunction issues, only 23 dancers had usable data. Using leave-one-out cross-validation, machine learning models were compared with the optic motion capture system using root mean square error (RMSE) in degrees and correlation coefficients (r) over the complete movement profile of each leg lift and mean absolute error (MAE) and Bland Altman plots for peak angle accuracy.

RESULTS

The average RMSE for model estimation was 6.8° for thigh elevation angle and 5.6° for lumbar spine sagittal plane angle, with respective MAE of 6.3°and 5.7°. There was a strong correlation between the machine learning model and optic motion capture for peak angle values (thigh r=0.86, lumbar r=0.96).

CONCLUSION

The models developed demonstrated an acceptable degree of accuracy for the estimation of thigh elevation angle and lumbar spine sagittal plane angle during dance-specific leg lifting tasks. This provides potential for a near-real-time, field-based measurement system.

摘要

目的

准确的现场舞蹈运动学评估对于了解髋关节和背部疼痛的病因,从而进行预防和管理非常重要。本研究旨在开发一种机器学习模型,使用可穿戴传感器数据来估计芭蕾舞抬腿任务中的大腿抬高和腰椎矢状面角度。

方法

女性舞者(n=30)进行了特定于芭蕾舞的抬腿任务,包括向前、向侧和向后。舞者佩戴了六个可穿戴传感器(100 Hz)。同时使用 18 个摄像机运动分析系统(250 Hz)进行数据采集。由于同步和硬件故障问题,只有 23 名舞者有可用数据。使用留一法交叉验证,通过均方根误差(RMSE)在每个腿举完整运动过程中的角度和相关系数(r),以及峰值角度准确性的平均绝对误差(MAE)和 Bland Altman 图,比较了机器学习模型与光学运动捕捉系统。

结果

模型估计的大腿抬高角度平均 RMSE 为 6.8°,腰椎矢状面角度平均 RMSE 为 5.6°,相应的 MAE 分别为 6.3°和 5.7°。机器学习模型与光学运动捕捉系统之间的峰值角度值相关性很强(大腿 r=0.86,腰椎 r=0.96)。

结论

所开发的模型在估计特定于舞蹈的抬腿任务中的大腿抬高角度和腰椎矢状面角度方面表现出了可接受的准确性。这为实时、现场测量系统提供了潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验