Suppr超能文献

结合 4D Flow MRI 和复杂网络理论来描述扩张型和非扩张型人体升主动脉血流动力学的异质性。

Combining 4D Flow MRI and Complex Networks Theory to Characterize the Hemodynamic Heterogeneity in Dilated and Non-dilated Human Ascending Aortas.

机构信息

PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.

Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.

出版信息

Ann Biomed Eng. 2021 Sep;49(9):2441-2453. doi: 10.1007/s10439-021-02798-9. Epub 2021 Jun 2.

Abstract

Motivated by the evidence that the onset and progression of the aneurysm of the ascending aorta (AAo) is intertwined with an adverse hemodynamic environment, the present study characterized in vivo the hemodynamic spatiotemporal complexity and organization in human aortas, with and without dilated AAo, exploring the relations with clinically relevant hemodynamic and geometric parameters. The Complex Networks (CNs) theory was applied for the first time to 4D flow magnetic resonance imaging (MRI) velocity data of ten patients, five of them presenting with AAo dilation. The time-histories along the cardiac cycle of velocity-based quantities were used to build correlation-based CNs. The CNs approach succeeded in capturing large-scale coherent flow features, delimiting flow separation and recirculation regions. CNs metrics highlighted that an increasing AAo dilation (expressed in terms of the ratio between the maximum AAo and aortic root diameter) disrupts the correlation in forward flow reducing the correlation persistence length, while preserving the spatiotemporal homogeneity of secondary flows. The application of CNs to in vivo 4D MRI data holds promise for a mechanistic understanding of the spatiotemporal complexity and organization of aortic flows, opening possibilities for the integration of in vivo quantitative hemodynamic information into risk stratification and classification criteria.

摘要

受以下证据的启发,即升主动脉瘤(AAo)的发生和进展与不利的血液动力学环境交织在一起,本研究在有和没有扩张的 AAo 的情况下,对人体主动脉的血液动力学时空复杂性和组织进行了体内特征描述,探索了与临床相关的血液动力学和几何参数之间的关系。复杂网络(CNs)理论首次应用于 10 名患者的 4D 流磁共振成像(MRI)速度数据,其中 5 名患者存在 AAo 扩张。沿心动周期的速度基数量的时间历史被用于构建基于相关的 CNs。CNs 方法成功地捕获了大规模的相干流特征,划定了流分离和回流区域。CNs 指标强调,AAo 扩张的增加(以最大 AAo 和主动脉根部直径的比值表示)破坏了正向流的相关性,减少了相关性持续长度,同时保持了二次流的时空同质性。将 CNs 应用于体内 4D MRI 数据有望深入了解主动脉流的时空复杂性和组织,为将体内定量血液动力学信息纳入风险分层和分类标准提供可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6596/8455395/476d933aa8c0/10439_2021_2798_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验