Streit Jason K, Park Kyoungweon, Ku Zahyun, Yi Yoon-Jae, Vaia Richard A
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States.
UES, Inc., Dayton, Ohio 45431, United States.
ACS Appl Mater Interfaces. 2021 Jun 16;13(23):27445-27457. doi: 10.1021/acsami.1c05262. Epub 2021 Jun 3.
Solution-based printing of anisotropic nanostructures is foundational to many emerging technologies, such as energy storage devices, photonic elements, and sensors. Methods to rapidly (>mm/s) manufacture large area assemblies (≫cm) with simultaneous control of thickness (<10 nm), nanoparticle spacing (<5 nm), surface roughness (<5 nm), and global and local orientational order are still lacking. Herein, we demonstrate such capability using flow-coating to fabricate robust, self-supporting mono- and bilayer films of polystyrene-grafted gold nanorods (PS-AuNRs) onto solid substrates. The relationship among solvent evaporation, deposition speed, substrate surface energy, concentration, and film thickness for solutions of such hairy hybrid nanoparticles spans the Landau-Levich and evaporative film formation regimes. In the Landau-Levich regime, solvent evaporation rapidly concentrates the PS-AuNRs, leading to the formation of thin films with distinct, randomized side-by-side domains. Alternatively, processing at slower velocities in the evaporative regime results in the global alignment of PS-AuNRs. Processing speed and substrate surface energy afford tuning of the film's optical extinction of a given PS-AuNR via fine control of inter-rod distance and subsequent plasmonic coupling between neighboring nanorods. Because the concept of the polymer-grafted nanorod can be expanded to a variety of different polymer canopies, shapes, and core materials, the processing-structure relationships established in this work will have important implications on the future development of anisotropic nanostructure-based applications.
基于溶液的各向异性纳米结构打印是许多新兴技术(如能量存储设备、光子元件和传感器)的基础。目前仍缺乏能够快速(>毫米/秒)制造大面积组件(≫平方厘米),同时控制厚度(<10纳米)、纳米颗粒间距(<5纳米)、表面粗糙度(<5纳米)以及全局和局部取向有序性的方法。在此,我们展示了一种利用流涂法在固体基板上制备坚固、自支撑的聚苯乙烯接枝金纳米棒(PS-AuNRs)单层和双层薄膜的能力。对于这种有“毛发”的杂化纳米颗粒溶液,溶剂蒸发、沉积速度、基板表面能、浓度和薄膜厚度之间的关系跨越了朗道-列维奇和蒸发成膜机制。在朗道-列维奇机制下,溶剂蒸发迅速浓缩PS-AuNRs,导致形成具有不同、随机并排区域的薄膜。相反,在蒸发机制下以较慢速度进行处理会导致PS-AuNRs的全局排列。通过精确控制棒间距离以及相邻纳米棒之间随后的等离子体耦合,处理速度和基板表面能能够调节给定PS-AuNR薄膜的光学消光。由于聚合物接枝纳米棒的概念可以扩展到各种不同的聚合物冠层、形状和核心材料,因此在这项工作中建立的加工-结构关系将对基于各向异性纳米结构的应用的未来发展产生重要影响。